
REDD+

ENVIRONMENT, FOREST AND CLIMATE CHANGE COMMISSION, THE FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA

Potential for Tree-Based Landscape Restoration (FLR) for Amhara Regional State

30 May 2020 Addis Ababa, Ethiopia

Submitted to: Ethiopian Environment, Forest and Climate Change Commission (EFCCC)

Authors:

Tesfay Woldemariam, World Resources Institute, Washington DC Sintayehu Deresse Kassa, Regional REDD+ Desk, Amhara Regional State Bezuyehu Àlemu Abebe, Environment Forest and Climate Change Commission (EFCCC)

Photo credit: Stuart Hill

TABLE OF CONTENTS

Acro	onyms.		1
Exec	cutive S	ummary	2
1	Introd	uction	3
2	2	tives of the Study	
3	Metho	dology and Approach	4
	3.1	Identification of Forest and Land Use Sector Goals	5
	3.2	Identification of Forest and Land Use Sector Challenges	5
	3.3	Identification of Relevant Stakeholders	6
	3.4	Identification of Tree-Based Restoration Interventions	6
	3.5	Identification of Criteria and Data	. 10
	3.6	Mapping Spatial Distribution	. 23
	3.7	Validation of the Preliminary Results	. 23
4	Result	S	. 24
	4.1	Summary Statistics and Spatial Distribution of Identified FLR Options	. 24
	4.2	Potential for Improved Management of Degraded Natural Forest (IMDNF)	. 29
	4.3	Potential for Afforestation/Reforestation of Degraded Lands (AfR)	. 30
	4.4	Potential for Commercial Plantation Establishment (CPE)	. 31
	4.5	Potential for Agri-Silvicultural Systems (AgSLV)	. 32
	4.6	Potential for Silvopastoral Systems (SILVO)	. 33
	4.7	Potential for Woodlot Establishment (WLE)	. 34
	4.8	Potential for Bamboo Restoration (LLBMB/HLBMB)	. 35
	4.9	Potential for Improved Management of Woodlands (MYRRH & INCENSE)	. 36
	4.10	Potential for Religious Forest Management (RF)	. 37
	4.11	Potential for Riverine Forest Restoration (RIVN)	. 38
	4.12	Potential for Wetland and Waterbody Protection Buffer Development (WWBF)	. 39
	4.13	Potential for Afroalpine and Sub-Afroalpine Ecosystem Restoration (AASA)	. 40
	4.14	Potential for Conservation of Biodiversity Priority Areas (BPDA)	. 41
5	Concl	usion	. 42
6	Ackno	wledgements	. 42
7	Refere	nces	. 42
8	Apper	ndix 1: Workshops	. 45
	8.1	Inception Workshop	. 45
	8.2	Validation Workshop	. 48
9	Apper	ndix 2: Spatial Modelling	. 51
	9.1	General Masking Model to Exclude Ineligible Areas from Analysis	. 52
	9.2	A Model to Combine Individual FLR Types into Single Map	. 53
	9.3	Merging the Combined FLR Map with Auxiliary Data	. 54
10	Apper	ndix 3: Ancillary Data Included in Final Analysis	. 55
	10.1	Potential Natural Vegetation Atlas of Ethiopia (PNV)	. 55

	10.2 Ecological Land Units Map (ELU)	
	10.3 Africa Terrestrial Ecosystems Map	
11	Appendix 4: Meket District Map as an Example of Combined District Maps	
12	Appendix 5: Exclusively Available FLR Area	
13	Appendix 6: Overlapping FLR Area	61

<u>List of Tables</u>

Table 1: Identified FLR Options	7
Table 2: Criteria for excluding ineligible areas from all tree-based FLR potential analysis	10
Table 3: Final set of refined criteria	11
Table 4: Area statistics of identified interventions	25
Table 5: Summary of original identified option and criteria from March 2019 workshop	45
Table 6: Recommended updates from the validation workshop, August 2019	48

<u>List of Figures</u>

Figure 1: Map of Combined Tree-based Restoration Potential	. 26
Figure 2 : Map of Potential for Improved Management of Degraded Natural Forest Intervention	. 29
Figure 3: Map of Potential for Afforestation/Reforestation Intervention	. 30
Figure 4: Map of Potential for Commercial Plantation Establishment Intervention	. 31
Figure 5: Map of Potential for Agri-silvicultural Systems Intervention	. 32
Figure 6: Map of Potential for Silvopastoral Systems Intervention	. 33
Figure 7: Map of Potential for Woodlot Establishment Intervention	. 34
Figure 8: Map of Potential for Bamboo Restoration	. 35
Figure 9: Map of Potential for Woodland Restoration (Myrrha & Incense)	. 36
Figure 10: Map of Potential for Religious Forest Management	. 37
Figure 11: Map of Potential for Riverine Forest Restoration	. 38
Figure 12: Map of Potential for Wetland and Waterbody Buffer Restoration	. 39
Figure 13: Map of Potential for Afroalpine/Sub-Afroalpine Ecosystem Restoration	. 40
Figure 14: Map of Potential for Biodiversity Priority Areas	. 41
Figure 15: Model to exclude ineligible areas	
Figure 16: Model to combine all potential maps	. 53
Figure 17: Model to combine restoration intervention map with ancillary data	. 54
Figure 18: Meket example layout of district maps	. 57

Acronyms

AASA	Afroalpine/Sub-Afroalpine Ecosystems
AfR	Afforestation Reforestation
AgSLV	Agri-silvicultural Systems
BDPA	Biodiversity Priority Areas
CPE	Commercial Plantation
EFCCC	Environment Forest and Climate Change Commission of Ethiopia
FLR	Forest Landscape Restoration
HLBMB	Highland Bamboo
IMDNF	Improved Management of Degraded Natural Forest
Incense	Combretum Woodlands Restoration
LLBMB	Lowland Bamboo
Mha	Million hectares
Myrrh Commiphora Woodlands Restoration	
REDD Reducing Emissions from Deforestation and Forest Degra	
RF	Religious Forest Management
Riverine	Riverine Forest
SILVO	Silvopastoral Systems
WLE	Woodlot Establishment
WRI	World Resources Institute
WWBF	Wetland and Waterbody Buffer

Executive Summary

Environmental deterioration and land degradation are two of the most pressing global environmental and developmental challenges of the 21st century. To curb these serious challenges, countries are developing various adaptation and mitigation programs and executing them in coordination with international collaborators. Ethiopia has launched several initiatives and programs to protect the environment and reduce land degradation as part of its growth and transformation plans (GTP) to boost the economic development of the country. One of the country's biggest initiatives is the climate resilient green economy (CRGE) strategy, which is part its economic development agenda. The government of Ethiopia is working in collaboration with an international alliance to enhance CRGE strategy and programming to respond to the abovementioned climate challenges. One program affiliated with the CRGE is the forest landscape restoration (FLR) initiative. The FLR program was initiated by Environment, Forestry and Climate Change Commission (EFCCC) and the World Resources Institute (WRI) in 2016, with the goal of identifying forest landscape restoration options at the national level (MEFCC, 2018). This regional study is part refining and improving the national forest landscape restoration work at a regional level by accommodating regional criteria, challenges and priorities working with local and regional partners.

World Resources Institute, in partnership with the EFCCC and the Amhara regional REDD+ team, carried out this regional study. Participatory planning and validation workshops were conducted with regional stakeholders selected by REDD+ team during the inception phase to support the whole process and near the end of the project to validate the outcome. During the participatory planning workshop in March 2019, participants identified seven restoration potential options and a set of mapping criteria for each option. Based on this recommendation, we identified and mapped suitable locations for those FLR options using ESRI GIS software. A second workshop was conducted in August 2019 in Bahir Dar to validate the preliminary results. Based on recommendations, final analysis was conducted which yielded 15 individual FLR options that also included non-tree-based interventions.

The total potential for all identified interventions, including non-tree-based restoration interventions was about 13 Mha (87%) of the region (table 4). This figure also includes biodiversity conservation areas and Afro/Sub-Afroalpine regions not suitable for tree-based interventions, which together amounts to about 3Mha. The former has legally designated restrictions and the latter is above the traditional (3,750m) threshold. Thus, the final potential for all tree-based restorations interventions is about 10Mha (67%). A lot of interventions overlap, which implies that multiple options compete for the same space or alternatively also it means that those areas are suitable for more two or more intervention types. This entails prioritization using additional non-biophysical criteria for final decision making. The total area where two or more interventions are overlapping is about 6Mha (41%). The total non-overlapping area available for all tree-based interventions is about 7Mha (46%), split among the 10 interventions (see table 4 for details).

1 Introduction

Ethiopia's current national development plan, the Growth and Transformation Plan-II (GTP-II), outlines a series of forest and land use sector goals for the Amhara region (Box 1). However, to achieve these targets, the region must overcome various socio-economic and environmental challenges within the forest and land use sector (Box 2). This analysis aims to support decision-making processes by regional stakeholders so that they can develop more effective and informed strategies and action plans to tackle the identified challenges and achieve the regional goals set in the GTP-II. This study builds on two similar studies, namely, the "National Potential and Priority Maps for Tree-based Landscape Restoration in Ethiopia (MEFCCC, 2018)¹" and the "Forest Landscape Restoration in Amhara (Sophia C. et al., 2016)²."

This work expands on previous Ethiopia's national restoration potential mapping by EFCCC and WRI and a regional work done by UNIQUE Forestry and Land Use company, Germany through increased engagement of local stakeholders and newer and more localized data into this analysis. To facilitate increased local engagement, two regional workshops were conducted in Bahir Dar city, Amhara region, where participants from multidisciplinary institutions were selected and become the core resource persons in identifying regional forest and land use sector goals, the main challenges in the sector, and identification of the restoration options and mapping criteria. Additionally, efforts were made to incorporate relevant, updated global and local data in the analysis. Key global datasets included in this study were, the Global Ecological Land Units (Sayre et al., 2014, Land productivity Dynamics (Trends.Earth, Conservation International, 2018), and Normalized Difference Vegetation Index (Didan, K., 2015). As a result, we expect significantly improved results compared to previous studies. The ancillary data from USGS will also be used during field validation and prioritization of overlapping or competing potential forest and landscape restoration (FLR) options. The final analysis resulted in fifteen potential restoration interventions, expanding the previously identified seven in UNIQUE study.

¹ Ministry of Environment, Forest and Climate Change (MEFCC). 2018. National Potential and Priority Maps for Tree-Based Landscape Restoration in Ethiopia (version 0.0): Technical Report. Addis Ababa: Ministry of Environment, Forest and Climate Change.

² Sophia Carodenuto, Gilbert Wathum, Laura Kiff, Till Pistorius, Timm Tennigkeit, 2015. Forest Landscape Restoration in Ethiopia, specific to Amhara National Regional State- Options for GIZ to support its implementation in the context of the Bonn Challenge 2.0. Methodology and results for Ethiopia.

2 Objectives of the Study

The project was carried with the following seven main objectives in mind:

- 1. Identify regional forest and land use sector goals
- 2. Identify main forest and land use sector **challenges** in Amhara region
- 3. Identify sector relevant stakeholders (institutions) to engage with in the region
- 4. Identify tree-based **FLR interventions** to address the identified challenges of the sector
- 5. Identify mapping **criteria** and **data** to map suitable areas for identified FLR interventions
- 6. Map spatial distribution of the identified FLR options
- 7. Validate draft maps and statistics from initial analysis

3 Methodology and Approach

The methodology and approach combined stakeholder engagement and expert analysis using Geospatial mapping tools. Amhara regional REDD+ (Reducing Emissions from Deforestation and Forest Degradation) team recruited 15 stakeholders from relevant institutions that were convened in Bahir Dar, Ethiopia from March 11-12, 2019 for an initial planning workshop. During the March planning workshop, stakeholders were engaged throughout the process to achieve objectives 1-5. The stakeholders were introduced into a national tree-based FLR mapping methodology. Following the half-day training, they were divided into groups to independently discuss thematic sessions described under the objectives section above. After each group session, the group representative reported back the results of their respective group exercises. All participants provided feedback, and necessary changes were made on consensus basis.

WRI experts took the criteria generated from the planning workshop and conducted the mapping work. <u>ESRI GIS software</u> modelling tools like the Model Builder were used for mapping the identified FLR options to achieve objective number six by translating the criteria and data into maps. Best available (accessible) local, national and global data (Table 2 & 3) were used as input to translate the criteria into maps. A validation workshop was held on August 22, 2019 in Bahir Dar city to validate the draft maps and statistics. The outputs for each objective are detailed in the following sections.

3.1 Identification of Forest and Land Use Sector Goals

The stakeholders were divided into three groups and tasked with identifying the main forest and land use sector goals in the Amhara region. Analysis results from all groups were further discussed and summarized (Box 1).

Box 1 | Regional Forest and Land Use Sectoral Goals/Targets

- Create employment
- Increase carbon sequestration
- Improve Ground Water Potential
- Improve livelihood and alleviate poverty
- Improve forest products values and value addition
- Reduce flooding and land slides
- Protect and Manage existing 950,000ha Natural. Forest and establish 2.3 Mha of plantations
- Promote ecotourism and other social and cultural values of forest landscapes (medicinal & traditional values)
- Increase Forest Cover by 1.2% annually to increase from current 13% to 19.1% at the end of GTP-II

- Determine Land use potential
- Reduce emissions from deforestation
- Reduce siltation and sedimentation
- Conserve and protect biodiversity
- Produce and distribute energy saving technologies
- Narrow the gap between supply and demand of forest products
- Substitute forest products import and generate income from exports of industrial wood products
- Reduce soil erosion by 70% by implementing Integrated Watershed Management and improve land productivity
- Conduct research to transform forest sector, and industrialize to increase the current 4% GDP contribution to 8% of Agriculture's (National) GDP

3.2 Identification of Forest and Land Use Sector Challenges

Working groups were then tasked with listing the most common biophysical challenges to achieving the identified forest and land use sectoral goals in the Amhara region (Box 2).

Box 2 | Biophysical Challenges towards Achieving Regional Forest and Land Use Sector Goals

- Habitat fragmentation/loss of biodiversity
- Loss of soil fertility
- Deforestation
- Forest degradation
- Landslides
- Air pollution (in urban areas)

- Water scarcity (in water bodies and soils)
- Overgrazing/free grazing
- Soil erosion
- Flooding
- Climate change impacts
- Siltation/sedimentation of water bodies

3.3 Identification of Relevant Stakeholders

During the third session, the working groups were tasked with identifying the list of organizations that are already involved in restoration directly or indirectly (Box 3).

Box 3 Identified Relevant Stakeholders (Institutions) in the Regio	on
--	----

- Bureau of Agriculture
- Abay Basin Development Authority
- Bureau of Water, Irrigation Energy/electricity
- ICRAF, Disaster Prevention and Preparedness
- Cooperatives Promotion agency
- Tourism Bureau
- Bureau of Women, Youth and Children affairs
- Bureau of Justice, law enforcement (Courts & Police)
- Science and Technology
- TVET (Technical and Vocational Education and Training), LULA Bureau
- Finance Institute (ACSI, Micro-Finance Institutions)
- Livestock Agency & Fishery Development Agency

- Wood Processing Factories
- Tana Sub-basin
- Bureau of Land administration & utilization
- EFCOA (REDD, FSDP, NFG/Norwegian Group
- AFE & Forest Seed Center
- Investment Promotion Agency
- NGOs (ORDA, GIZ, SLMP, PNSP, NABU, AGP)
- Institute of Biodiversity
- 13 Universities and Colleges
- ARARI (Research Centers), BEFRC
- Environment, Forest & Wildlife Protection and Development Agency

3.4 Identification of Tree-Based Restoration Interventions

During the planning workshop held in March 2019, the stakeholder groups came up with several generalized FLR interventions. Experts at the World Resources Institute (WRI) mapped the potential of each intervention by translating criteria developed during the workshop and existing secondary data into ArcGIS models. A workshop was conducted on August 22, 2019 in Bahir Dar, Amhara region to validate the results of the mapping exercise. Local stakeholders, most of whom were also participants in the planning workshop, helped to validate the draft products. Participants provided the project team with constructive feedback to incorporate into the draft maps. 13 final restoration options were selected after a two-stage iterative processes (Table 1). Both bamboo restoration and improved management of woodlands include two sub-types, thus total of 15 with the subtypes.

Table 1 | Identified FLR options

Maps (Value Column)	FLR Name	FLR CODE	Definitions	Decision-Making Process to Inform
1	Improved Management of Degraded Natural Forest	IMDNF	Introduce and/or improve the management aspects of existing forests and woodlands to guarantee optimal performance of its respective purposes and avoid deforestation.	REDD+ strategy and investment
2	Afforestation or Reforestation	AfR	Non-commercial planting/(assisted) natural regeneration to restore natural forest ecosystems	
3	Commercial Plantation Establishment	CPE	Largescale commercial planation development - not for the purpose of restoring natural ecosystems but to relieve pressure on natural ecosystems by producing commercial wood and wood products.	REDD+ strategy and investment
4	Agri-silvicultural Systems	AgSLV	All agroforestry types in croplands for a variety of purposes and in any arrangement (alley cropping, boundary trees, scattered trees, hedgerows, etc.).	Bureau of Agriculture strategy regarding agroforestry
5	Silvopastoral systems	Silvo	All agroforestry systems that integrate tree planting and management with livestock development (both in highlands and lowlands). The highland grasslands include areas that were once croplands or forestlands but are currently used for grazing, resulting in land degradation and productivity loss (marginal lands).	Burau of Agriculture strategy regarding increased livestock production and sustainable woodland management
6	Woodlot Establishment	WLE	Establishment of woodlots near agricultural lands. At times, due to extreme degradation and loss of crop productivity, parts of or all	REDD+ strategy and investment

Maps (Value Column)	FLR Name	FLR CODE	Definitions	Decision-Making Process to Inform
			areas used as crop fields may be eligible for woodlot establishment. Local government policies, local market value of wood products for certain species, and owners' consent will be integral to the decision-making process in these cases.	
7	Lowland Bamboo Development	LLBMB	Includes lowland bamboo areas with potential for bamboo restoration, excluding current bamboo forests mapped by INBAR 2016.	Amhara region's Lowland Bamboo Investment strategy
8	Highland Bamboo Development	HLBMB	Includes highland bamboo areas with potential for bamboo restoration, excluding the current bamboo forests mapped by INBAR 2016.	Amhara region's Highland Bamboo Investment strategy
9	Improved Management of Commiphora Woodlands	Myrrh	Improved management of Commiphora woodlands in eastern Amhara region, primarily for Myrrh development.Myrrh and Gum Arabic i comiphora woodlands o Amhara lowlands	
10	Improved Management of Combretum Woodlands	Incense	e Improved management of Combretum Incense development in the woodlands in western Amhara region, primarily incense development. Lowlands	
11	Religious Forest	RF	Religious (church) forests are critical seedbanks and sources of native biodiversity and are very common in the region. The focus of this intervention is to protect and manage these critical resources and refuges of native biodiversity.	Biodiversity conservation and development of seedbanks for native trees.
12	Riverine Forest	RIVN	This intervention refers to protecting and efficiently managing riverine forests along major rivers as unique ecosystems.	Reduce sedimentation and protect and re-establish unique riverine forest ecosystems.

Maps (Value Column)	FLR Name	FLR CODE	Definitions	Decision-Making Process to Inform
13	Wetland and Waterbody Buffer	WWB	There are few very critical waterbodies and wetland ecosystems in the region. Lake Tana, the source of Blue Nile and headwaters of the Grand Renaissance Dam, is an example of such critical resources. Tekeze Reservoir is another manmade lake that requires attention. This intervention aims to protect these critical waterbodies and restore and develop important wetland ecosystems.	Protect critical natural waterbodies like Lake Tana and reservoirs and dams by creating buffer around them. Restore and preserve viable wetland ecosystems
14	Afroalpine/Sub- Afroalpine Ecosystem Management	AASA	Afroalpine/Sub-Afroalpine sites are above tree line, and hence not eligible for tree- based FLR. However, the team suggested including the locations in the potential map because they are critical endemic biodiversity hotspots and have high hydrologic importance in the region. The main goal is given to preserve and improve their management, as deemed necessary.	Biodiversity conservation; Watershed protection
15	Biodiversity Priority Areas	BDPA	This intervention refers to all existing biodiversity priority areas, including Protected Areas, National Forest Priority Areas, and key biodiversity areas. This category is suggested for inclusion only to visualize on the region's potential map to facilitate coordination with the other FLR interventions. Appropriate BDPA interventions will be left to the current designated entities to consider and implement.	Include in restoration maps so that the existing designated agencies can develop sound management and synergy with restoration interventions in the vicinities of these biodiversity conservation areas.

3.5 Identification of Criteria and Data

After identifying potential interventions, criteria were developed to identify areas that are suitable for each restoration intervention. When the workshop criteria were incomplete or missing for a specific intervention, it was augmented or replaced by criteria used in UNIQUE's 2015 study and/or the national potential map of 2016. Table 2 presents the final set of criteria that was translated into the model builder and applied to the input data to produce the FLR potential maps.

	Areas not suitable for any intervention	Decision/Value	Justification	Data Source
om all Interventions	Sugarcane Plantations (SugarcanePlantations_ESC2016_UTM)	Excluded	Not suitable due to current designation restrictions	Ethiopian Sugar Corporation (ESC), 2016
	Industrial Parks (IndustrialParks_IPDC2016_UTM)			
	Hydropower Plants (Hydropower_MWIE2014)	Excluded including 0.5km buffer surrounding it		MoWIE (Ministry of Water, Irrigation and Electricity), 2015.
	Towns (CSA, 2007c)	Excluded including 0.5km buffer surrounding it	Current land use type is not eligible for	CSA (Central Statistical Agency), 2007c. Cities and towns spatial data.
1 fre	Lakes (Lakes_MWIE2015)	Excluded		Ministry of Water Irrigation and Energy, 2015
Exclusion from	Reservoirs (Reservoirs_MWIE2015)		restoration	MoWIE (Ministry of Water, Irrigation and Electricity), 2015.
Exc	Roads (ERA_2007)	Excluded		Ethiopian Road Authority, 2007
	Rivers layer (Rivers_VECEA2010)	including 15m buffer surrounding it		Potential Natural Vegetation of Eastern Africa (VECEA), 2010

Table 2 Cri	teria for excluding	a ineligible areas fro	om all tree-based FLF	R potential analysis

INBAR National Bamboo map	Excluded	Mapped already by INBAR	International Network for Bamboo and Rattan (INBAR), 2016
Plantation (AFE_Plantation_2016_UTM)	Excluded	Existing land designation	Amhara Forest Enterprise, 2016: Planation data

In addition to the above exclusion criteria for each intervention, multiple other criteria were applied to the input data to generate the final maps. Table 3 presents the final set of criteria for all identified FLR interventions that were translated into the model builder and applied to the input data to produce the FLR potential maps.

Table 3 | Final set of refined criteria

Interventions	Data	Decision	Explanation	Source
Improved Management of Degraded Natural Forest	Current land cover	Include Natural Forest	This refers to improved management of remaining degraded natural forest to avoid further deforestation while extracting goods and environmental services.	WLRC 2016; 30m
	Normalized Difference Vegetation Index (NDVI)	Included NDVI value <0.6	Management priority is for degraded forest. We used NDVI trends (2010 and 2018) to identify only degraded forest areas. To qualify as "degraded" the 2018, 16 daily mosaic NDVI value of the forest area should be less than that of 2010 (showing a declining trend); and 2018 NDVI should be less than 0.6 (workshop suggested criterium).	MOD13Q1.006 Terra NDVI, 16-Day Global; 250m ³ . Accessed using Google Earth Engine JavaScript API code ⁴ .

³ <u>https://lpdaac.usgs.gov/products/mod13q1v006/</u>

⁴<u>https://code.earthengine.google.com/f03faea828d3d7cc1359cce72bd78331</u>

Interventions	Data	Decision	Explanation	Source
Adapted from UN	Productivity Dynamics (LPD)	Include LPD values: -1, -2, &, - 3	In addition to NDVI trends (2010 to 2018), Land Degradation trend (LPD) from Trends.Earth ⁵ was used to separate degraded forests from intact forests. According to Trends.Earth, the values -1, - 2, and -3 represent stressed, moderate decline, and decline status, respectively. These three categories were used together with NDVI trends to exclude intact forest and focus on only degraded natural forest from the current land use map.	Trends.Earth. Conservation International, 2018. Available online at: <u>http://trends.earth</u>
Afforestation / Reforestation	Natural potential vegetation	 Include: Acacia-Commiphora woodland and bushland Acacia wooded grassland of the Rift Valley Combretum-Terminalia woodland and wooded grassland Dry evergreen Afromontane forest and grassland complex Moist evergreen Afromontane forest Transitional rainforest 	Areas where trees could grow based on the national potential vegetation atlas, field expertise from national botanical experts, and suitability modeling.	Van Breugel et al. 2015; National, 90m.

⁵ <u>http://trends.earth/docs/en/pdfs/Trends.Earth Tutorial04 Using Custom Productivity.pdf</u>

nterventions	Data	Decision	Explanation	Source
	Current land cover	Exclude Forest, Settlement, wetlands, Waterbodies	Currently forest and/or legally or ecologically not feasible for AfR intervention	WLRC 2016; 30m
	Slope	Include croplands and grasslands in slope > 60%	Rural lands where the slope is greater than 60% will be restricted from farming and free grazing; they will be used for the development of trees, perennial plants, and forage production (FDRE 2005).	Derived from SRTM v4.1, 2014
	Productivity Dynamics (LPD)	Refine to focus on degraded lands and land areas with declining productivity	Land Degradation trends (LPD) from Trends.Earth ⁶ were used to focus on degraded lands. According to Trends.Earth, the values -1, -2, and -3 represent stressed, moderate decline, and decline status, respectively. These three categories were used to exclude productive lands.	Trends.Earth. Conservation International, 2018. Available online at: <u>http://trends.earth</u>
	Tree crown cover	Exclude all areas where tree crown cover is >20%	Areas with more than 20% tree crown cover are considered forests, according to Ethiopia's forest definition. and are excluded from afforestation/reforestation potential.	Hansen et al. 2014
	Rainfall	Exclude < 400mm	In areas with less than 400 mm annual rainfall, survival and growth of planted trees are highly restricted.	NMA, 2000; 1 km
	Elevation	Exclude > 3,750 m above sea level	Land above 3,750 m altitude is Afro-alpine, which is not suitable to tree planting.	Derived from SRTM v4.1, 2014

⁶ http://trends.earth/docs/en/pdfs/Trends.Earth Tutorial04 Using Custom Productivity.pdf

Interventions	Data	Decision	Explanation	Source
Commercial Plantation	Current land cover	Includes bareland, degraded cropland, and bush/shrubland	Other land use classes are not eligible for commercial plantation either because they	WLRC 2016; 30m
Establishment			are not ecologically viable for profitable business or are designated as protected areas to protect natural ecosystems.	WLRC 2016; 30m Tree Cover, 30m Tree Cover, 30m Trends.Earth. Conservation International, 2018. Available online at: http://trends.earth ERA 2007. Not readily available Final geoprocessing
	Land Productivity dynamics (LPD) layer		from Trends.Earth site were used to separate degraded croplands. According to Trends.Earth, the values -1, -2, and -3Conservation International, 2 Available online	Conservation International, 2018. Available online at:
		Croplands that fall within these two categories are also potential candidates for plantations as this might be a more profitable and sustainable option.		
	Market accessibility	Exclude areas farther than 20 kms from roads ⁷	Markets need to be easily accessed to transport and sell wood products.	ERA 2007.
	Areas legally or socially protected	Exclude religious forests	Some religious forests might be too small to be classified as forest, but nonetheless should be preserved.	Not readily available
	Minimum size	Exclude areas < 10 ha	It is not economically profitable to invest in commercial plantations smaller than this threshold.	Final geoprocessing output

⁷ At the validation workshop, the team discussed and suggested to update the single 10km buffer threshold criterion into multiple ring buffers with additional 20km. The argument was dependent on C/B analysis of the project (timber, fuelwood, poles and posts, etc.); some projects might remain profitable if established even farther away (e.g., industrial wood plantations vs pols and posts).

Interventions	Data	Decision	Explanation	Source
	Slope	Include 30% - 60%	This upper threshold is meant to avoid the risks of landslides during skidding and harvesting (national criteria); the lower threshold is to avoid competition with cropland (ANRS Experts)	Derived from SRTM v4.1, 2014
	Altitude	Include 1,500m - 3,200m	Even though trees can survive outside this range, this is the range suggested by workshop participants for commercial plantations to remain profitable because performance and yield matters here, not only survival.	
	Average Annual Rainfall	Exclude < 1,000 mm	The workshop suggestion for commercial plantation is 1000mm even though 800mm/year is the minimum average annual rainfall allowing a yield of 15m ³ /ha/year for Grevillea and 25 m ³ /ha/year for eucalyptus.	Hijmans et al. 2005.
National criteria	ı for industrial aı	nd on-industrial wood plantatior	ns and ANRS experts at the March 2019 worl	rshop
Agri- silvicultural	Current land cover	Include cropland	Agri-silvicultural (multipurpose tree intercropping) takes place on croplands	WLRC 2016; 30m
Systems	Agricultural practices	Exclude mechanized farming	These agricultural lands were not deemed compatible with agroforestry practices.	No readily available data for mechanized
		Exclude rice fields		farming and rice fields.
		Exclude large-scale sugarcane plantations		For large-scale sugarcane plantations: ESC 2016.

Interventions	Data	Decision	Explanation	Source
	Slope	Exclude> 60 %	Rural lands whose slope is greater than 60% will not be used for farming and free grazing; they will be used for development of trees, perennial plants, and forage production (FDRE 2005). Therefore, if croplands currently exist above this slope, they will be included in the AfR FLR option and are excluded from agroforestry.	Derived from SRTM v4.1, 2014
	Tree cover	Include areas with less than 50 trees/ha or tree cover <20 %	In the absence of data on tree density, percent tree cover is used. Agroforestry systems with greater than 30% tree cover are considered already well-stocked (while ICRAF proposes that "agroforestry" be defined by tree cover greater than 10% on farms; it also recognizes the potential to improve existing agroforestry system with 10–30% tree cover [Zomer et al. 2014]). For Ethiopian context, greater than 20% tree cover is defined as forest. Hence, we used 20% instead of 30%.	Hansen et al. 2014
	Rainfall	Exclude < 400 mm	Below 400 mm annual rainfall, survival and growth of planted trees are highly restricted.	NMA, 2000; 1km
	Elevation	Exclude > 3,750 m above sea level	Land above 3,750 m altitude is Afro-alpine and should not be planted with trees.	Derived from SRTM v4.1, 2014
National criteria	and ANRS Expe	rts, March 2019 workshop		
Improved Management of Woodlands	Potential Natural Vegetation Atlas of Ethiopia (PNV)	 Include: Acacia-Commiphora woodland and bushland Combretum-Terminalia woodland and wooded grassland 	These are the two woodland classes in the eastern and western lowlands of Amhara region containing Commiphora (Myrrh) and Combretum (Incense), respectively. The management of these woodlands was proposed by the validation workshop.	Van Breugel et al. 2015

Interventions	Data	Decision	Explanation	Source
	Current land cover	Include Woodlands and shrublands/bushlands	Within the above two PNV classes, shrublands/bushlands is the most dominant category, followed by the woodland class, according to the current WLRC landcover map. Hence, both categories are included.	WLRC 2016; 30m
	Elevation	Exclude >3750m	This is tree line limit.	Derived from SRTM v4.1, 2014
Adapted using U	NIQUE 2015 stud	y, National criteria and validati	on workshop input	
Silvopastoral Systems	Current land cover	Include grassland	Silvopastoral systems are located in grasslands	WLRC 2016; 30m
Jystems	Tree cover	Exclude area with tree cover > 20%	Pastoral land with 20% or more tree cover is considered an already well-stocked silvopastoral systems (ICRAF proposes "agroforestry" to be defined by tree cover greater than 10% on farms [Zomer et al. 2014], but experts proposed also promoting the improvement of existing silvopastoral systems with 10–20% tree cover).	Hansen et al. 2014, 30m
	Invasive species	Include areas with invasive tree species	While invasive species might show a canopy cover of more than 20%, the species are not desirable. These areas need to have the invasive species eradicated before increasing their tree cover with desirable species.	No readily available data.

Interventions	Data	Decision	Explanation	Source
	Protection of natural ecosystems	Exclude natural grassland ecosystems: the grassland overlaps on both the Natural Potential Vegetation Atlas and current WLRC Land use map	These natural grassland ecosystems must be protected, and trees shouldn't be promoted there.	WLRC 2016 ; 30m & Van Breugel et al. 2015 ; 90m
	Relic forest	Exclude religious/relic forests		Data available but not accessible yet.
	Average annual rainfall	Exclude areas ≤ 250 mm	There is little potential for trees in areas with less than 250 mm average annual rainfall.	Hijmans et al. 2005.
	Productivity Dynamics (LPD) & NDVI Decline	Include degraded lands	Combined with NDVI decline (2010 to 2018); Land degradation decline trends (LPD) from Trends.Earth were used to separate degraded grasslands. According to this dataset the values -1, -2, and -3 represent land productivity status as stressed, moderate decline, and declining, respectively. These three categories were used together with NDVI to refine and focus only on degraded grasslands on the current land use map.	Trends.Earth. Conservation International, 2018. Available online at: http://trends.earth
	Elevation	Exclude area >3750m	Land above 3,750 m altitude is Afro-alpine and should not to be planted with trees.	Derived from SRTM v4.1, 2014
Adapted from wo	orkshop and nati	onal criteria for agro-silvopasto	ral systems	1
Woodlot Establishment	Current land cover	Include bare land within 2km from agricultural lands	Bare lands contiguous with agricultural lands are considered available and suitable for woodlots. Woodlots are found within agricultural lands or close to homesteads for ease of management	WLRC 2016; 30m

Interventions	Data	Decision	Explanation	Source
	Landcover & Productivity Dynamics (LPD) Layer	Include unproductive agricultural land (intersection b/n cropland and productivity layer)	Woodlots are to be promoted on degraded, unproductive, and formerly cultivated lands (i.e., lands that are categorized as -2 or -3 on the LPD layer).	Trends.Earth. Conservation International, 2018. Available online at: <u>http://trends.earth</u>
	Rainfall	Exclude < 400 mm	In areas with less than 400 mm of annual rainfall, survival and growth of planted trees are highly restricted.	NMA, 2000; 1 km
	Elevation	Exclude > 3,750 m above sea level	Land above 3,750 m altitude is Afro-alpine and should not be planted with trees.	Derived from SRTM v4.1, 2014
	Area	Include <10ha	Areas larger than this threshold are assumed to be commercial plantations.	Final geoprocessing output map
UNIQUE 2015 stud	ly and criteria d	leveloped by ANRS experts at Ma	rch 2019 workshop	
Bamboo Restoration	National bamboo potential map	Include the Amhara portion of the national bamboo potential map	Since there is no new regional data to improve the national bamboo map, the national one was taken as is and clipped to view the Amhara region.	National Potential and Priority Maps for Tree- Based Landscape Restoration in Ethiopia, 2018
Religious Forest	Digitized church forest	Include	Religious (church) forests are very common in Amhara and are critical seedbanks for native trees and resources for biodiversity conservations ⁸ .	Digitized from Google Earth Engine
Manually digitize	d church forests	on Google Earth	·	·

⁸ <u>https://www.nationalgeographic.com/environment/2019/01/ethiopian-church-forest-conservation-biodiversity/#close</u>

Interventions	Data	Decision	Explanation	Source
Riverine Forest	Current land use map	Include forest, waterbodies, and wetlands	Riverine forests are characterized as dominating floodplains and resistant to waterlogging conditions. Given lack of existing data on riverine forests, we extracted three landcover classes that will most likely be suitable as habitats for riverine forests. Then, the rivers layer was used, with 200m buffer added around it (100 m each side). This buffer was used as a mask to extract areas from the previous three classes. Because the rivers layer and the terrain were showing some misalignment, and it is common for rivers to meander in floodplains, we chose wider buffer and slope threshold criteria instead of the 30m buffer that was suggested during the validation workshop.	WLRC 2016; 30m
	Rivers Slope %	Include areas with 200m of major Rivers Include only slope < 10% (<5 Degrees)	Will be used to make the 200 m buffer. Riverine forests dominate floodplains. Therefore, slope cutoff may be included as an additional criterion when data is absent on the exact habitats of the riverine forest.	VECEA 2010 Derived from SRTM v4.1, 2014
Validation works	hop suggested c	riteria adapted to available data	1	1
Wetlands and Waterbody Buffer	Current Land use	Include waterbodies and wetlands	Eligible land use categories.	WLRC 2016; 30m
	Rivers	Include the areas overlapping the "Shoreline class" of the rivers layer (VECEA2010 Rivers). Use extract by attribute tool to select the	Participants at the validation workshop including these areas. Shoreline areas extracted from the rivers layer were used as one of the potential inputs.	VECEA 2010

Interventions	Data	Decision	Explanation	Source
		shoreline class as follows: "a- Type = %shoreline%		
	Buffer	Create a buffer of 1km around the combined output of the previous two inputs.	For both wetlands and waterbodies, tree- based restoration is relevant only as an outside buffer. Therefore, a 1km buffer was established as an eligible zone for appropriate waterbody and wetland FLR interventions to enhance the protection of these ecosystems by reducing erosion and siltation from the surrounding areas among others.	Output from preceding GIS Analysis steps
Validation works	shop suggested	criteria adapted to available data	1	
Afroalpine- Subalpine	Potential Natural Vegetation Atlas of Ethiopia	Include Afroalpine & Montane Ericaceae belt	These are the most relevant classes to satisfy the intent expressed at the validation workshop; the two classes also align well with the 3000m elevation limit.	Van Breugel et al. 2015; 90m
	Protected Areas	Exclude Biodiversity Priority sites	Within the Afroalpine/Sub-Afroalpine region, there are parks and conservation areas that should be excluded from this analysis. Those biodiversity priority areas will instead be included in the biodiversity priority restoration category since they may have stricter legal restrictions.	EWCA 2015
Validation works	shop suggested	criteria adapted to available date	1	
Biodiversity Priority Areas	Protected Area	Include all Protected Areas (PAs) layers (contains parks, reserves, community conservation areas, wildlife sanctuaries)	These are the biodiversity hotspot areas designated by government, which face interference and encroachment challenges. Creating buffer zones around them where appropriate FLR interventions are implemented would help to minimize the anthropogenic impacts on protected areas.	EWCA 2012

Interventions	Data	Decision	Explanation	Source
	KBAs	All areas included	Refers to Key Biodiversity Areas are biodiversity hotspots areas with priority focus for conservation and management, as identified by Conservation International in 2016.	Key Biodiversity Areas 2015, Bird Life International
	NFPAs	All areas included	Most National Forest Priority Areas in Ethiopia are important areas in which to restore natural forest ecosystems.	NFPAs 2015, WDPA Regional office
	Buffer	Create buffer of 1km around the PAs	Use output from previous step and make a buffer zone to consider developing with PAs authorities. This would minimize the level of encroachment to these critical biodiversity hotspot areas by creating alternative resources in the vicinity to meet the community needs.	The output from preceding step
Validation works	shop suggested c	riteria adapted to available data	1	

3.6 Mapping Spatial Distribution

Each of the identified FLR options were mapped by translating the identified criteria and input data into maps employing ESRI ArcGIS model builder tools (Appendix 2). The output is the maps and hectarage statistics for each of those FLR options presented under "Results" section. To spare excess technical jargon, we did not include the complete list of all models and explanations in this main report. The models are submitted with the GIS database.

3.7 Validation of the Preliminary Results

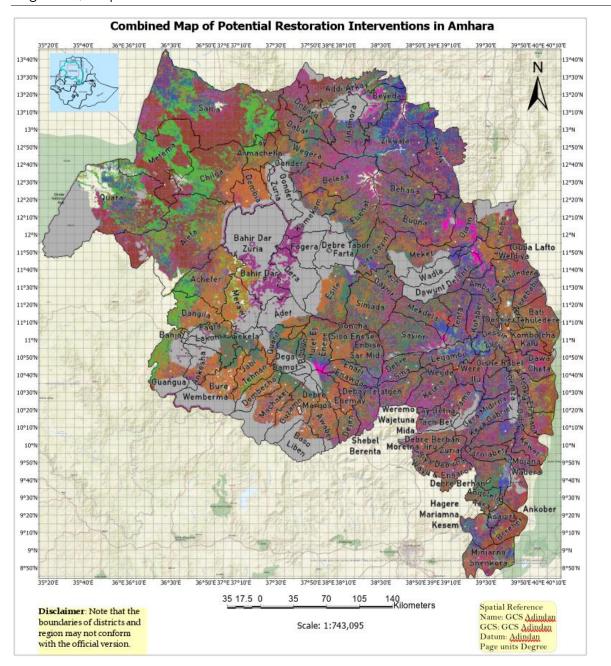
A one-day validation workshop was conducted in Bahir Dar in August 2019 to evaluate the preliminary results of the mapping. Result was presents which shows the mapping methodology and output results that include the spatial distribution of the FLR options and their hectarage. There were suggestions made to split some original FLR options and add new few non-tree-based restoration interventions. Accordingly, the mapping task was rerun to reproduce the maps were which incorporated the stakeholders' feedback from validation workshop. The final analysis resulted in 15 FLR options presented under "Results" section below.

4 Results

4.1 Summary Statistics and Spatial Distribution of Identified FLR Options

WHEN READING (TABLE 4) AND THE FOLLOWING SECTIONS, PLEASE NOTE THE MEANING OF "EXCLUSIVE" VS "OVERLAPPING" IN THIS CONTEXT AND THE IMPLICATIONS. EXCLUSIVE MEANS THOSE AREAS ARE SOLELY SUITABLE (HAS POTENTIAL) FOR THE SPECIFIED FLR INTERVENTION (NO COMPETITION). OVERLAPPING AREAS MEAN THAT THOSE LOCATIONS ARE SUITABLE (HAS POTENTIAL) FOR MORE THAN ONE FLR OPTION AND EITHER OF THE THOSE OVERLAPPING FLR OPTIONS CAN BE IMPLEMENTED THERE. THIS IN TURN IMPLIES THAT TWO OR MORE FLR OPTIONS ARE COMPETING FOR THE SAME LOCATION. HENCE, IT WOULD REQUIRE RANKING AND PRIORITIZATION FOR FINAL DECISION USING ADDITIONAL CRITERIA, BOTH BIOPHYSICAL AND/OR NON-BIOPHYSICAL DATA SUCH AS LOCAL COMMUNITY PRIORITIES ON THOSE SPECIFIC LOCATIONS.

The total potential for all identified interventions, including non-tree-based restoration interventions in Amhara region is about 13.58Mha, which is 87% of the region's area (Table 4). About 7.15Mha of this total is exclusively available area (no overlap), split among the 15 respective FLR options, whereas the remaining 6.43Mha has two or more overlaps. There are two intervention types which are of non-tree-based category included upon the stakeholders' recommendation; namely, the "Biodiversity Priority Areas (BDPA)" and "Afroalpine/Sub-Afroalpine (AASA)" area. The two constitute about 3.00Mha and 0.60Mha respectively. These two are not ideal for tree-based restoration interventions because the former has legal restriction and the latter has ecological limitations due to the tree line elevation threshold (situated above 3,750m). The experts at the workshop suggested to include them for purpose of spatial referencing in the maps in relation to the identified tree-based FLR interventions in the vicinity so that planning is coordinated. However, this does not mean appropriate restoration and improved management interventions to naturally regenerate native vegetation and overall ecological functions are forbidden in these two categories.


Hence, the final total biophysical potential for all tree-based FLR options is about 10.00Mha or 64% of the region's area. Table 4 presents the details on how the total potential area of 13.58Mha is split among the 15 identified FLR options identified (including the non-tree-based ones) and the overlap scenarios.

GIS (map) Code	FLR Code & Name	Exclusive (ha)	Overlap (ha)	Total (exclusive + overlap) (ha)	% share of total FLR	% Share of region area
1	IMDNF (Improved Management of Degraded Natural Forest)	106,117	78,318	184,435	1.36%	1.18
2	AfR (Afforestation Reforestation)	871,032	3,637,386	4,508,418	33.19%	28.97
3	CPE (Commercial Plantation)	35,568	158,694	194,262	1.43%	1.25
4	AgSLV (Agri- silvicultural Systems)	1,549,939	2,820,076	4,370,015	32.17%	28.08
5	SILVO (Silvopastoral Systems)	2,986	333,904	336,890	2.48%	2.16
6	WLE (Woodlot establishment)	219,530	497,702	717,232	5.28%	4.61
7	LLBMB (Lowland Bamboo)	308,703	2,509,682	2,818,385	20.75%	18.11
8	HLBMB (Highland Bamboo)	441,742	1,518,092	1,959,834	14.43%	12.59
9	Myrrh (Commiphora Woodlands)	55,329	360,560	415,889	3.06%	2.67
10	Incense (Combretum Woodlands)	563,485	1,591,118	2,154,603	15.86%	13.84
11	RF (Religious Forest Management)	28	168	196	0.00%	0.00
12	Riverine (Riverine Forest)	1,763	5,156	6,919	0.05%	0.04
13	WWBF (Wetland and Waterbody buffer)	93,461	413,699	507,160	3.73%	3.26
14	AASA (Afro-Sub Afroalpine ecosystems)	115,942	479,112	595,054	4.38%	3.82
15	BDPA (Biodiversity Priority Areas)	2,786,785	218,580	3,005,365	22.13%	19.31
Total		7,152,410	6,430,716	13,583,126		
%	%		41%	87%		
Region Area				15,564,811		

Table 4 | Area statistics of identified interventions

KEY: The sum of overlapping FLR cells and Total FLR area cannot be added as in table 4. It overestimated due to multiple suitability. Explore the tables included in appendices 5 and 6 for clarity.

The "Combined Tree-based FLR Potential Map" (Figure 1) presents the spatial distribution of all combinations of restoration potentials on a pixel by pixel basis. The total number of combinations is 207.9 The map is complex at regional level, but together with information contained in its attribute table, it is an invaluable decision support tool for regional, even site level planning.

Note: The administrative boundaries used in this map are not authoritative.

⁹ Explore the map using the provided legend and acronyms for the combined interventions code.

Box 4 | FLR Options Code¹⁰

1 = IMDNF = Improved Management of	9 = Myrrh = Commiphora Woodlands 10 = Incense = Combretum Woodlands				
Degraded Natural Forest					
2 = AfR = Afforestation Reforestation	11 = RF = Religious Forest				
3 = CPE = Commercial Plantation	12 = Riverine = Riverine Forest				
4 = AgSLV = Agri-silvicultural	13 = AASA = Afro-Sub Afroalpine ecosystems				
5 = SILVO = Silvopastoral					
6 = WLE = Woodlot establishment					
7 = LLBMB = Lowland Bamboo					
8 = HLBMB = Highland Bamboo					

Box 5 | Legend of the combined FLR map

	Combined Map of	Restoration Potential	
	FLRCom	boCode	
AASA	AfR-HLBHB	CPE-AASA	- IMDNF-WWBF-AASA
AfR	AfR-HLBMB-WWBF	- CPE-AgSLV	Incense
AfR-AgSLV	AfR-Incense	CPE-AgSLV-AASA	Incense-WWBF
Afr-AgSLV Afr-AgSLV-HLBMB	AfR-Incense-WWBF	- CPE-AgSLV-HLBMB	LLBHB
Afr-Agslv-HLBMB-	AfR-LLBNB	CPE-AgSLV-HLBMB-	LLBMB-Incense
Afr-Agslv-HLBMB- Afr-AgslV-LLBMB	AfR-LLBMB-Incense	-CPE-AgSLV-WLE	LLBMB-Incense-WWBF
Afr-Agslv-LLBMB-	AfR-LLBMB-Incense-	CPE-AgSLV-WLE-AASA	LLBNB-Myrrh
AIR-AgSLV-LLBRD- AfR-AgSLV-RF	AfR-LLBHB-Myrrh	-CPE-AgSLV-WLE-HLBMB-	LLBNB-Myrrh-WWBF
Afr-Agslv-RF Afr-Agslv-WLE	AfR-LLBNB-Myrrh-	- CPE-HLBMB	LLBHB-RIVN
<u> </u>	AfR-LLBMB-WWBF	- CPE-HLBMB-AASA	LLBNB-RIVN-WWBF
AfR-AgSLV-WLE-HLBMB	AfR-Nyrrh	CPE-HLBMB-WWBF	LLBNB-WWBF
AfR-AgSLV-WLE-HLBMB-	AfR-Myrrh-WWBF	CPE-HLBMB-WWBF-AASA	Hyrrh
AfR-AgSLV-WLE-LLBMB	AfR-RF	-CPE-Incense	Hyrrh-WWBF
AfR-AgSLV-WLE-LLBMB-	AfR-SILVO	- CPE-Incense-WWBF	RF
AfR-AgSLV-WLE-WWBF	Afr-SILVO-HLBMB	CPE-LLBMB	- RF-AASA
AfR-AgSLV-WWBF	Afr-SILVO-HLBMB-	CPE-LLBMB-Incense	RF-BDPA
Afr-CPE	Afr-SILVO-LLBHB	CPE-LLBMB-Incense-	RF-WWBF-BDPA
AfR-CPE-AgSLV	Afr-SILVO-LLBMB-	- CPE-LLBNB-Nyrrh	RIVN
AfR-CPE-AgSLV-HLBMB	Afr-SILVO-WWBF	CPE-LLBMB-Myrrh-	RIVN-BDPA
AfR-CPE-AgSLV-HLBMB-	AfR-WLE	CPE-LLBMB-WWBF	BIVN-WWBF
AfR-CPE-AgSLV-LLBMB	AIR-WLE-HLBMB	CPE-Myrzh	RIVN-WWBF-BDPA
AfR-CPE-AgSLV-LLBMB-	AIR-WLE-HLBMB-WWBF	CPE-Mvrxh-WWBF	STLVO
Afr-CPE-AgSLV-WLE		- CPE-WLE	SILVO-AASA
Afr-CPE-AgSLV-WLE-	AfR-WLE-LLBNB	CPE-WLE-AASA	SILVO-HLBMB
AfR-CPE-AgSLV-WLE-	AfR-WLE-LLBNB-WWBF	CPE-WLE-HLBMB	SILVO-HLBMB-AASA
AfR-CPE-AgSLV-WLE-LLEMB-	AfR-WLE-WWBF	CPE-WLE-HLBMB-AASA	SILVO-HLBMB-WWBF
AfR-CPE-AgSLV-WLE-	AfR-WWBF	CPE-WLE-LLBMB	SILVO-HLBMB-WWBF-
AfR-CPE-AgSLV-WWBF	AgSLV	CPE-WLE-LLBMB-WWBF	SILVO ILLBIB
Afr-CPE-HLBMB	- AgSLV-AASA	CPE-WLE-WWBF	SILVO-WWBF
Afr-CPE-HLBMB-WWBF	AgSLV-HLBMB	CPE-WWBF	SILVO-WWBF-AASA
AfR-CPE-Incense	AgSLV-HLBMB-AASA	HLBNB	WLE
AfR-CPE-Incense-	AgSLV-HLBMB-RF	HLBHB-AASA	WLE-AASA
Afr-CPE-LLBNB	AgSLV-HLBMB-WWBF	HLBHB-Incense	WLE-HLBMB
Afr-CPE-LLBNB-	AgSLV-HLBMB-WWBF-	HLBMB-RF	
AfR-CPE-LLBMB-Incense-	- AgSLV-LLBMB	HLBHB-RIVN	WLE-HLBNB-AASA
AfR-CPE-LLBNB-Myrrh	AgSLV-LLBMB-WWBF	HLBHB-RIVN-WWBF	WLE-HLBMB-WWBF
AfR-CPE-LLBNB-Myrrh-	- AgSLV-RF	HLBHB-KIVN-WWBF	WLE-HLBNB-WWBF-AASA
AfR-CPE-LLBNB-WWBF	AgSLV-WLE	HLBMB-WWBF-AASA	WLE-LLBNB
AfR-CPE-Myrrh	AgSLV-WLE-AASA		WLE-LLBMB-WWBF
AfR-CPE-Mvrrh-WWBF	AgSLV-WLE-HLBMB	- IND NF	WLE-RF
AfR-CPE-WLE	AgSLV-WLE-HLBMB-	INDNF-AASA	WLE-WWBF
AfR-CPE-WLE-HLBMB	- AgSLV-WLE-HLBMB-WWBF-	- IND NF-HL BMB	WLE-WWBF-AASA
AFR-CPE-WLE-LLBMB	- AgSLV-WLE-LLBMB	IND NF-HLBNB-AASA	WWBF
AfR-CPE-WLE-LLBMB-	AgSLV-WLE-LLBMB-	IND NF-HLBMB-RF	WWBF-AASA
AfR-CPE-WLE-WWBF	- AgSLV-WLE-WWBF	INDNF-HLBMB-WWBF	WWBF-BDPA
AfR-CPE-WWBF	- AgSLV-WLE-WWBF-AASA	INDNF-HLBMB-WWBF-	INDNF-RF
BDPA	AgSLV-WWBF	INDNF-LLBNB	INDNF-WWBF
CPE	AgSLV-WWBF-AASA	INDNF-LLBMB-WWBF	

¹⁰ Legend: the GIS ID of the interventions, acronyms, and full name. Use it with the legend below.

The FLR combination codes (Box 4) in conjunction with the legend (Box 5) should enable you to explore the map. The corresponding color scheme (Box 5) is random symbology of each the 207 possible combinations. More than single FLR codes separated by "-" represent the number of overlapping FLRs. All 15 identified interventions are represented. To reduce the number of combinations and simplify the readability of the map, district by district maps (Appendix 4) were generated an available both in GIS database and as pdf printouts for all districts of Amhara.

4.2 Potential for Improved Management of Degraded Natural Forest (IMDNF)

About 0.18Mha of Amhara region has potential for Improved Management of Degraded Natural Forest. 0.11Mha of this total potential area is exclusively available for Improved Management of Degraded Natural Forest FLR option while the remaining 0.08Mh overlap with one or more of the other FLR options (Table 4). The following map depicts the spatial distribution of biophysical potential for IMDNF FLR option across Amhara region.

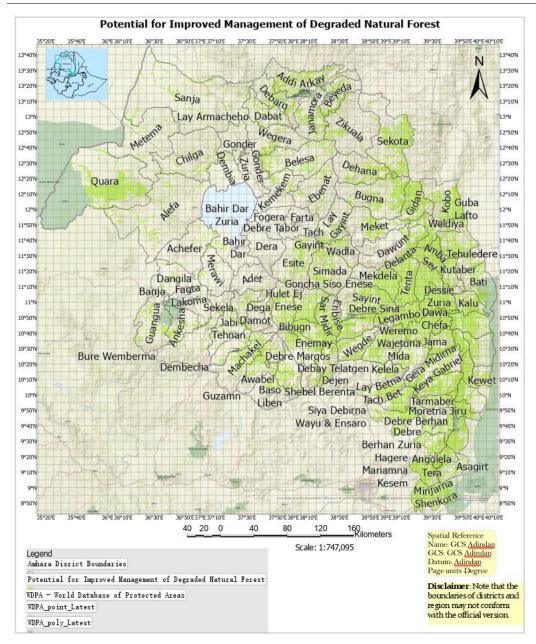
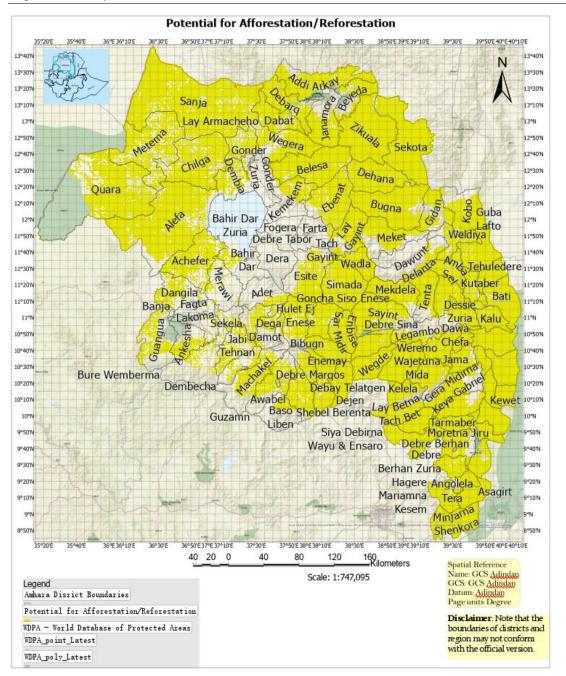
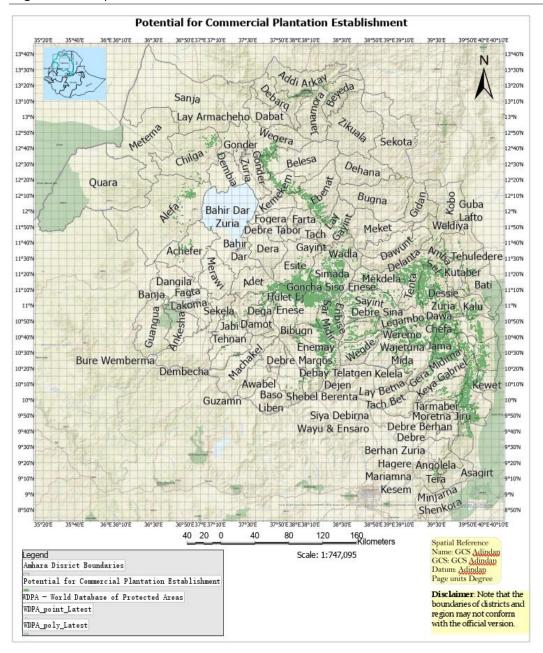



Figure 2 | Map of Potential for Improved Management of Degraded Natural Forest Intervention

Note: The administrative boundaries used in this map are not authoritative.

4.3 Potential for Afforestation/Reforestation of Degraded Lands (AfR)

About 4.51Mha of Amhara region has potential for Afforestation/Reforestation. 0.87Mha of this potential area is exclusively available for AfR intervention, while the remaining 3.64Mha overlap with one or more of other FLR options. The following map depicts the spatial distribution of biophysical potential for AfR across Amhara region.



Note: The administrative boundaries used in this map are not authoritative.

4.4 Potential for Commercial Plantation Establishment (CPE)

About 0.19Mha of Amhara region has potential for Commercial Plantation Establishment. 0.04Mha of this total potential area is exclusively available for CPE option while the remaining 0.16Mha overlaps with one or more FLR intervention. The following map depicts the spatial distribution of biophysically potential areas for Commercial Plantation Establishment across the entire Amhara region.

Note: The administrative boundaries used in this map are not authoritative.

4.5 Potential for Agri-Silvicultural Systems (AgSLV)

About 4.37Mha of Amhara region has potential for Agri-silvicultural FLR intervention. 1.55Mha of the total potential area is exclusively available for Agri-silvicultural FLR intervention, while the remaining 2.82Mha has overlaps with one or more FLR option. The following map depicts the spatial distribution of biophysically potential areas for Agri-silvicultural Systems across the entire Amhara region.

Figure 5 | Map of Potential for Agri-silvicultural Systems Intervention

Note: The administrative boundaries used in this map are not authoritative.

4.6 Potential for Silvopastoral Systems (SILVO)

About 0.34Mha of Amhara region has potential for Silvopastoral FLR options. About 2,980ha of this total potential area is exclusively available for Silvopastoral FLR intervention while the remaining 0.33Mha overlap with one or more other FLR option. The following map depicts the spatial distribution of biophysically potential areas for Silvopastoral FLR across the entire Amhara region.

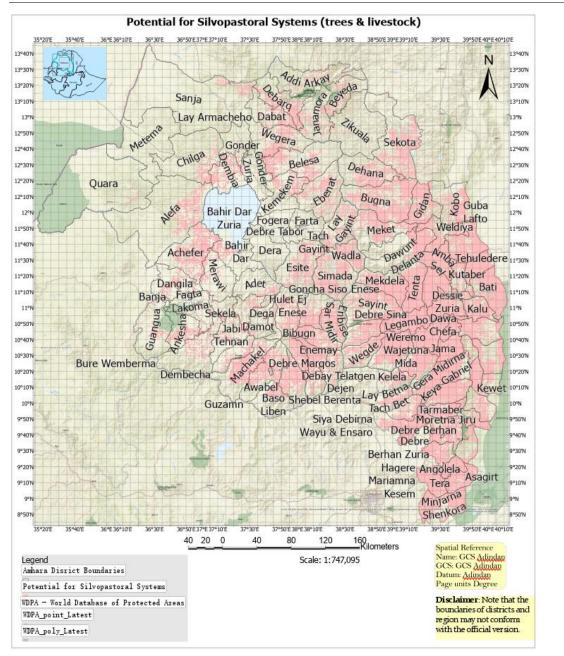


Figure 6 | Map of Potential for Silvopastoral Systems Intervention

Note: The administrative boundaries used in this map are not authoritative.

4.7 Potential for Woodlot Establishment (WLE)

About 0.72Mha of Amhara region has potential for Woodlot Establishment FLR option. About 0.22Mha of this total potential area is exclusively available for WLE, while the remaining 0.50Mha overlap with one or more FLR option. The following map depicts the spatial distribution of biophysically potential areas for WLE across the entire Amhara region.

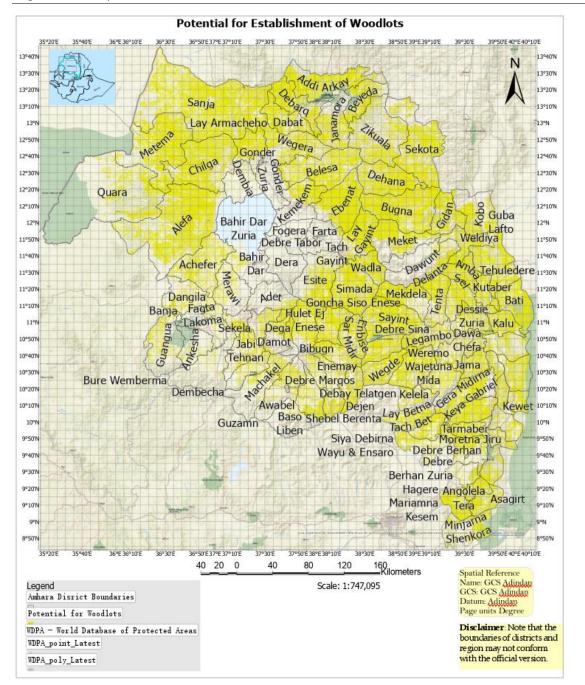
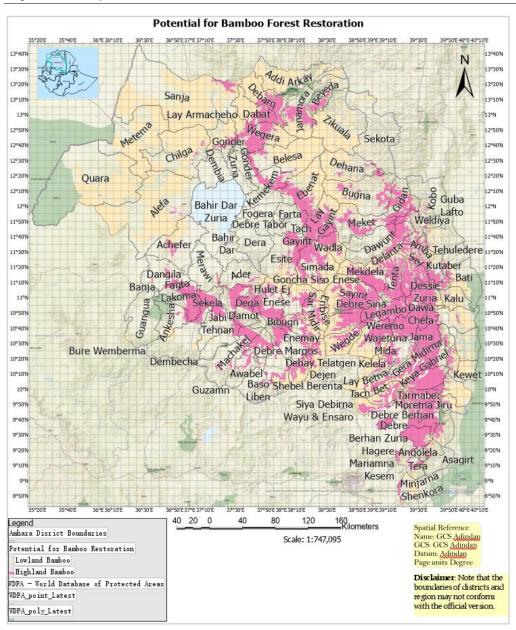



Figure 7 | Map of Potential for Woodlot Establishment Intervention

Note: The administrative boundaries used in this map are not authoritative.

4.8 Potential for Bamboo Restoration (LLBMB/HLBMB)

About 4.78Mha of Amhara region has the potential for Bamboo restoration FLR option. This total is split between Lowland Bamboo and Highland Bamboo FLR options. The LLBMB potential is 2.82Mha, while the HLBMB potential is 1.96Mha. Of this total potential, 0.31Mha and 0.44Mha are exclusively available for LLBMB and HLBMB respectively. The remaining 2.51Mha of LLBMB and 1.52Mha of HLBMB overlap with one or more other FLR options. The following map presents the spatial distribution of the biophysically suitable land area for both Bamboo types.

Figure 8 | Map of Potential for Bamboo Restoration

Note: The administrative boundaries used in this map are not authoritative.

4.9 Potential for Improved Management of Woodlands (Myrrh & Incense)

About 0.47Mha in the eastern part of Amhara region has potential for Commiphora Woodland restoration (MYRRH) and about 2.15Mha in the western part of the region has potential for Combretum Woodland restoration (INCENSE). Respectively 0.06Mha of MYRRH and 0.56Mha of INCENSE are exclusively available for respective FLR Option. The remaining area overlaps with one or more other FLR options (Table 4). The following map presents the spatial distribution of the biophysically suitable land area for both Myrrh and Incense intervention.

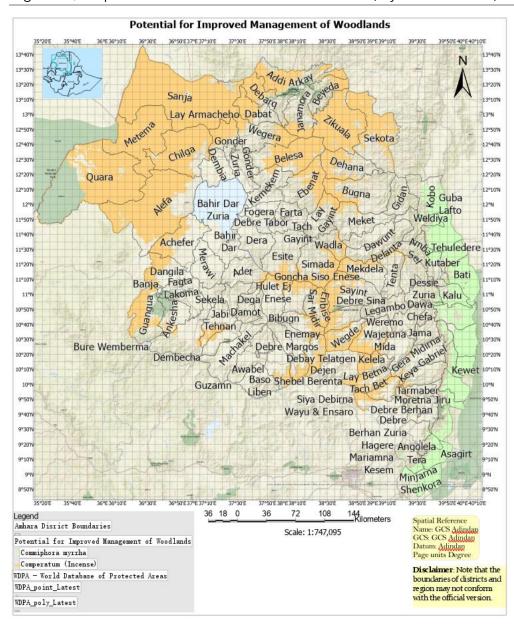


Figure 9 | Map of Potential for Woodland Restoration (Myrrha & Incense)

Note: The administrative boundaries used in this map are not authoritative.

4.10 Potential for Religious Forest Management (RF)

The total area of 96 religious (Church) forests manually digitized is about 169ha. The map does not contain all the potential existing religious forests in the region (data was not accessible). Once completed, the map will assist regional planning of all religious forest resource, primarily in church compounds.

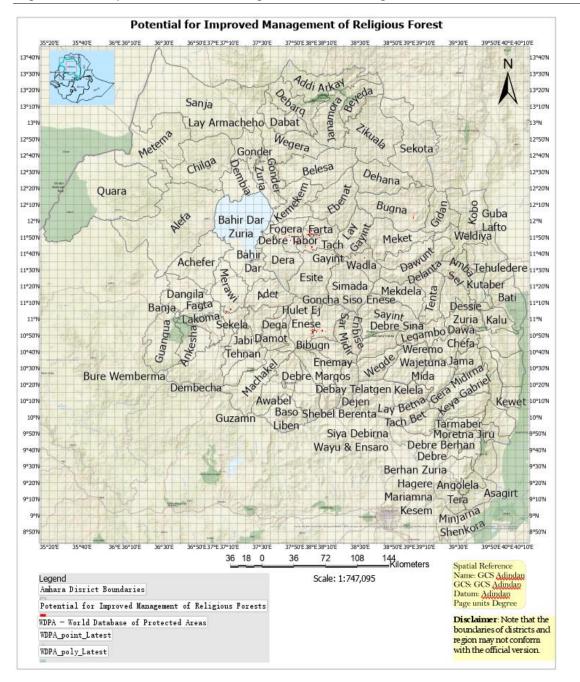


Figure 10 | Map of Potential for Religious Forest Management

Note: The administrative boundaries used in this map are not authoritative.

4.11 Potential for Riverine Forest Restoration (RIVN)

About 7,000ha of the region is suitable for riverine forest restoration. Of the total potential area, 1,760ha is exclusively available for this intervention while the remaining overlaps with other FLR options (Table 4). The following map depicts the spatial distribution of the RIVN potential areas.

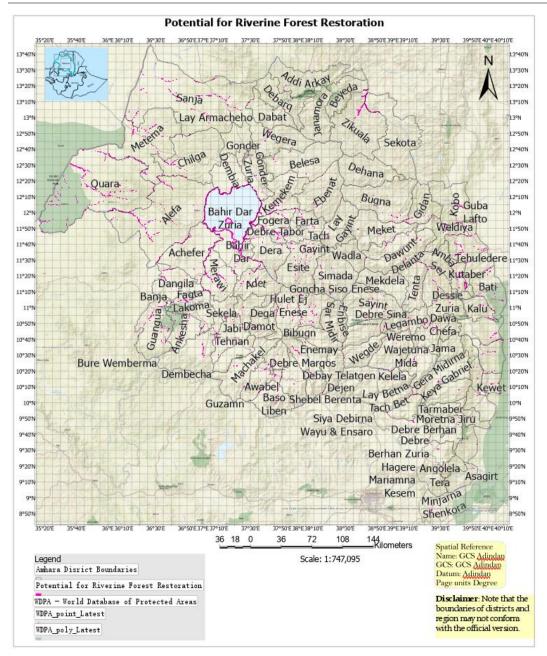
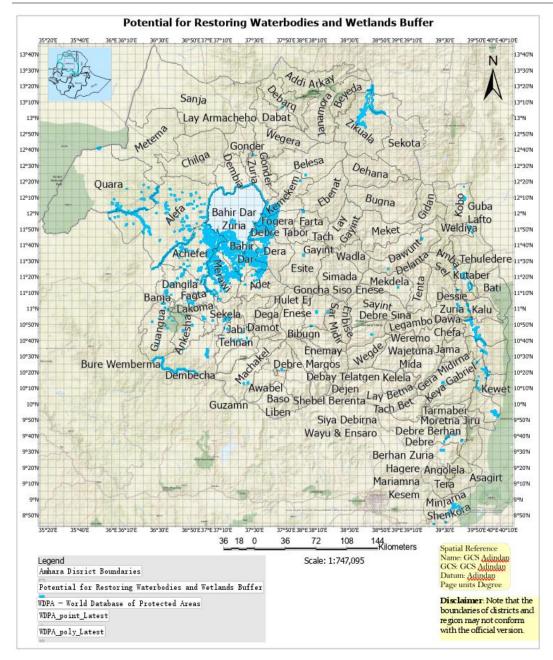



Figure 11 | Map of Potential for Riverine Forest Restoration

Note: The administrative boundaries used in this map are not authoritative.

4.12 Potential for Wetland and Waterbody Protection Buffer Development (WWBF)

About 0.51Mha of the region is has potential for wetland and waterbody protection buffer restoration FLR. Of the total potential area, 0.09Mha is exclusively available for WWBF intervention, while the remaining overlaps with one or more other FLR options (Table 4). The following map depicts the spatial distribution of WWBF FLR option.

Note: The administrative boundaries used in this map are not authoritative.

4.13 Potential for Afroalpine and Sub-Afroalpine Ecosystem Restoration (AASA)

About 0.60Mha of the region has potential for Afroalpine/Sub-Afroalpine restoration (Table 4). This map will assist the regional planning by identifying Afroalpine and Sub-Afroalpine ecosystems in the region.

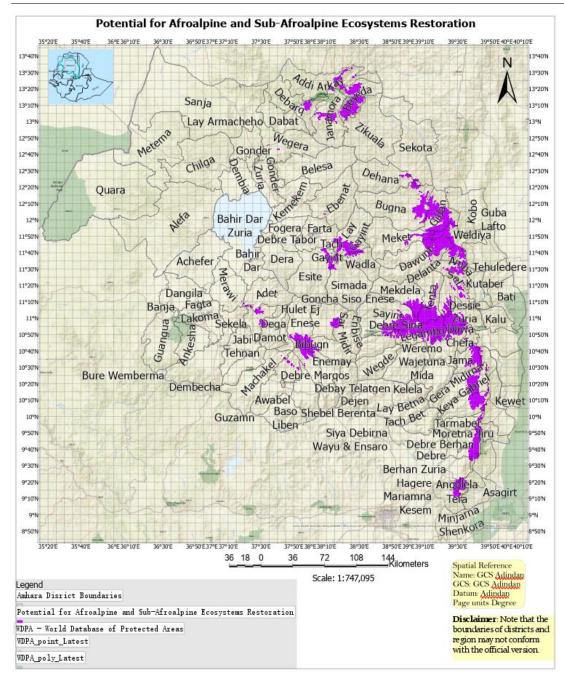
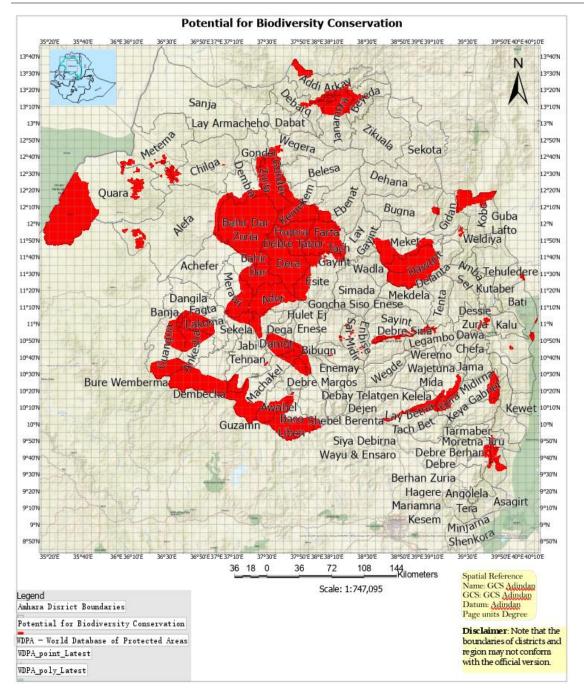



Figure 13 | Map of Potential for Afroalpine/Sub-Afroalpine Ecosystem Restoration

Note: The administrative boundaries used in this map are not authoritative.

4.14 Potential for Conservation of Biodiversity Priority Areas (BPDA)

About 3.01Mha of the region is designated as biodiversity priority areas. BPDAs are restricted from tree planting but natural regeneration might be enhanced by improved management of them. This map shows the spatial distribution of BPDA areas.

Note: The administrative boundaries used in this map are not authoritative.

5 Conclusion

The desired outcome of the study is to enable the region to better plan, assess, and implement various tree-based FLR interventions. Through both distribution mapping and hectarage statistics, this study shows the potential for various forest and landscape restoration interventions in Amhara region. Note the figures are solely based on biophysical feasibility analysis based on the available criteria and data. About 41 % of the total available potential has one or more overlaps (Table 4). Both scenarios entail further refining as well as ranking to prioritize among the overlapping FLR options. This should be considered with additional data (biophysical and non-biophysical) during action plan development. Field verification of the maps was not an integral part of this project and we strongly recommend it to be carried out before implementation. A logical next step would therefore, to do a similar exercise focused on non-biophysical analysis that takes into consideration the regional and local policies and regulatory aspects, community priorities, and enabling environment.

Finally, it is critical to develop and action plans for respective FLR intervention that assesses the cost-benefit analyses of each intervention type. Action plans should evaluate also the enabling environment, the overall Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis, and the mode of implementation (private, community, government led.). We hope these maps once verified will be important decision support tools in the sector including the potential to fundraise with, mobilize resources, develop projects, and implement restoration on the ground.

6 Acknowledgements

This work would not have been possible without financial support from the German Technical Cooperation. We would like to thank the Environment Forest and Climate Change Commission (EFCCC) of Ethiopia, particularly H.E. Ato Kebede Yimam and Dr. Tefera Mengistu, for their commitment to this project and for providing us with support staff from the commission and at the regional offices. The regional REDD+ team were responsible for all regional needs, including the stakeholder engagement and logistics of the two workshops conducted in Bahir Dar. These events would not have materialized without their support. Finally, we would like to extend a special thanks to all the experts from the region that participated in the inception and validation workshops to help develop the methodology and validate the outcomes.

7 References

Amhara BoA (Amhara Bureau of Agriculture). 2016. National forest priority areas spatial data.

BirdLife International and CI (Conservation International). 2016. Key Biodiversity Area (KBA) digital boundaries: December 2015 version. Maintained by BirdLife International on behalf of BirdLife International and Conservation International. Downloaded under license from the Integrated Biodiversity Assessment Tool. http://www.ibatforbusiness.org.

Central Statistics Agency of Ethiopia. 2007. CSA. 2007c. Cities and towns spatial data.

Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. 2015, distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD13Q1.006. Accessed 2020-05-11

ERA (Ethiopian Roads Authority). 2007. Road network spatial data.

ESC (Ethiopian Sugar Corporation). 2016. Current and planned large-scale sugar cane plantations spatial data. EWCA (Ethiopian Wildlife Conservation Authority). 2015. Protected areas spatial data.

ESRI 2019. ArcGIS Desktop: Release 10.1 Redlands, CA: Environmental Systems Research Institute

Friis, I., S. Demissew, and P. Van Breugel. 2010. "Atlas of the Potential Vegetation of Ethiopia: Rivers spatial data."

Hansen, M., University of Maryland, Google, U.S. Geological Survey, and National Aeronautics and Space Administration. 2014. Percent tree cover spatial data (based on 30-m resolution 2010 Landsat images). Based on the method described in M.C. Hansen, P.V. otapov, R. Moore, M. Hancher, S.A. Turubanova, A. Tyukavina, D. Thau, et al. 2013. "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science. 342(6160), 850–853. doi:10.1126/ science.1244693.

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones, and A. Jarvis. 2005. "Very High-Resolution Interpolated Climate Surfaces for Global Land Areas." International Journal of Climatology. 25: 1965–1978. http://www.worldclim.org.

IPDC (Industrial Park Development Corporation). 2016. Industrial parks spatial data.

IUCN (International Union for Conservation of Nature) and United Nations Environment Programme (UNEP)–World Conservation Monitoring Center (WCMC). 2016. The World Database on Protected Areas (WDPA). Cambridge, UK: UNEP-WCMC. <u>www.protectedplanet.net</u>.

Ministry of Environment, Forest and Climate Change (MEFCC). 2018. National Potential and Priority Maps for Tree-Based Landscape Restoration in Ethiopia (version 0.0): Technical Report. Addis Ababa: Ministry of Environment, Forest and Climate Change.

MEFCC (Ministry of Environment, Forest and Climate Change). Unpublished data on potential for commercial plantations for products other than industrial roundwood (version 0.0). MEFCC. 2016. Plantations spatial data.

MoWIE. (Ministry of Water, Irrigation and Electricity). 2015. Lakes and reservoirs spatial data.

Sayre, R., J. Dangermond, C. Frye, R. Vaughan, P. Aniello, S. Breyer, D. Cribbs, D. Hopkins, R. Nauman, W. Derrenbacher, D.Wright, C. Brown, C. Convis, J. Smith, L. Benson, D. Paco VanSistine, H. Warner, J. Cress, J. Danielson, S. Hamann, T. Cecere, A. Reddy, D. Burton, A. Grosse, D. True, M. Metzger, J. Hartmann, N. Moosdorf, H. Dürr, M. Paganini, P. DeFourny, O. Arino, S. Maynard, M. Anderson, and P. Comer, 2014. "Global Ecological Land Units (ELUs)".

Sophia Carodenuto, Gilbert Wathum, Laura Kiff, Till Pistorius, Timm Tennigkeit, 2015. "Forest Landscape Restoration in Ethiopia, specific to Amhara National Regional State- Options for GIZ to support its implementation in the context of the Bonn Challenge 2.0. Methodology and results for Ethiopia."

SRTM (Shuttle Radar Topography Mission). n.d. "30m Resolution Digital Elevation Model DEM)." http://earthexplorer.usgs.gov.

Trends.Earth. Conservation International. Available online at: http://trends.earth. 2018

UC Berkeley (University of California, Berkeley), Museum of Vertebrate Zoology, and International Rice Research Institute. 2015. "Global Administrative Areas (Boundaries)." http://gadm.org. Accessed March 28, 2018.

Van Breugel, P., R. Kindt, J.P.B. Lillesø, M. Bingham, S. Demissew, C. Dudley, I. Friis., et al. 2015. Potential Natural Vegetation Map of Eastern Africa (Burundi, Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda, and Zambia). Version 2.0. Forest and Landscape (Denmark) and World Agroforestry Centre. <u>http://vegetationmap4africa.org</u> based on Friis, I., S. Demissew, and P. Van Breugel. 2010. "Atlas of the Potential Vegetation of Ethiopia." Biologiske Skrifter (Biol.Skr.Dan.Vid.Selsk.) 58: 307.

WLRC (Water and Land Resource Center). 2016. Land-use land cover.

Zhao, Yuanyuan & Feng, Duole & Jayaraman, Durai & Belay, Daniel & Sebrala, Heiru & Ngugi, John & Maina, Eunice & Akombo, Rose & Otuoma, John & Mutyaba, Joseph & Kissa, Sam & Qi, Shuhua & Assefa, Fiker & Oduor, Nellie & Ndawula, Andrew & Li, Yanxia & Gong, Peng. (2018). "Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery." International Journal of Applied Earth Observation and Geoinformation. 66. 116-125. 10.1016/j.jag.2017.11.008.

8 Appendix 1: Workshops

Two workshops were conducted in Bahir Dar City, Amhara region with regional stakeholders.

8.1 Inception Workshop

This table below presents an example of how criteria identified at the workshop was summarized.

Table 5 | Summary of original identified option and criteria from March 2019 workshop

SUMMARY OF	IDENTIFIED INTERV	ENTIO	ON OP	TION	IS								
Aggregated for mapping						Woodlots		Silvopastoral Systems		Commercial Plantation	AfR (Afforestation reforestation)	Improved	Management of Forest and woodlands
Original workshop output	Managing trees on farmland	Alley Cropping	Boundary trees (farmland)	Taguia practices	Homesteads and woodlots	Buffer Zone (Roads, Waterbodies, Gullies)	Multipurpose tree planting in grazing land	Bee keeping/Bee forage tree planting	Fodder tree plating	Commercial plantation	AfR	Sustainable forest management (PFM)	Conservation and improved management of existing forest resources Area Closures
Slope- normal soil (%)	<60									30- 60%			
Slope-acidic soil (%)	N/A									≤30%			
rainfall (mm)										≥1000			

SUMMARY OF	IDENTIFIED INTERV	ENTI	ON OF	PTION	١S									
Aggregated for mapping	Agri- silviculture					Woodlots		Silvopastoral Systems		Commercial Plantation	AfR (Afforestation reforestation)	Improved	Management of Forest and woodlands	
Original workshop output	Managing trees on farmland	Alley Cropping	Boundary trees (farmland)	Taguia practices	Homesteads and woodlots	Buffer Zone (Roads, Waterbodies, Gullies)	Multipurpose tree planting in grazing land	Bee keeping/Bee forage tree planting	Fodder tree plating	Commercial plantation	AfR	Sustainable forest management (PFM)	Conservation and improved management of existing forest resources	Area Closures
Distance from Road (km)										10				
Altitude (m)										1500- 3200				
Area (ha)	small scale (not commercial, <50)									large scale (≥50)				
Location	farmland													
Max. tree density-tree cover (%)	<30													
Max. tree density-tree number (count/ha)	<50													
Agroclimati c exclusion	Alpine & Bereha (desert)													

Participants

List of participants who attended the inception workshop. Several participants also attended the validation workshop.

182	Name	Institution	Title/expertise	Email	Phone number	Day 1	Day 2
1.	Getnet Scatnychu	BOA	GIS	gisset@gmail	0941100562	-	
2.	Mesfin Admas	AmbarakEDD	Forest expert	atalelimen 915tu 1000 mail.com	0818768844	Ates	that
3.	Sintayow Deveze	Ambava REDDI	Coordinator	Sintayensel Ogenaircon	09110654933	ept .	eft
4.	Bantamia k Wondminow	Boa	Forester	bantomiak 2000 Quarit.	0934629102	Rip	-85
5.	Banfider Temach	LAUB	Land use expert	bantidere Yahou com	0939252188	The second	1.0
6.	Bithanenesket Alemu	Amhola REDDT	ANRU- expect	Lithonemes heizegenei	0918707000	-BAT	But
7.	Getinet Fixadie	Amhara Farest Enterprise	Fasest Development	getinetfic @gmail.com	09188000	2 94	700
8.	Dinera Simegnew	Kinham Envit, Ford middle		dinesas nogra Ognail com		April	April
						* *	-
*/	· · ·					WORLD RESOLUTION	LCES OTE
	Mapr	oing potential for tre	ee-based landscape	e restoration: T	raining attend	lance	
lac	5: 11-12 March 2019						
	Name	Institution	Title/expertise	Email	Phone number	Day 1	Day 2

Box 6 | List of inception workshop participants in March 2019

48 | Page

8.2 Validation Workshop

The validation workshop was conducted on August 22, 2019, in Bahir Dar. 12 participants from relevant organizations participated. Preliminary results from the project were presented and several recommendations for new interventions, and modifications to the original seven interventions, were made. As a result, the number of the final identified intervention options grew from 7 to 15. The following updates were made to the draft maps based on these and other recommendations from regional representatives.

Current or new	Change and additions suggested at the workshop	New/change	Description, purpose or activity (Shared by REDD+, primarily adapted from UNIQUE study)	Criteria	Value
IMDNF	Split this into woodlands & Forest	Improved Management of Degraded Natural Forest (IMDNF)	Enrichment planting and protection through PFM	Tree cover %	60
	Specify degradation status and develop maps only for Degraded Natural Forest (exclude intact Forest/Non- degraded forest from the mapping)			NDVI trend	10 years, 2-time stamp (2010- 2019), if the recent (2019) NDVI is less than the older (2010), and NDVI is <0.6; include as degraded that needs management.
	Split woodlands into two- the Western lowlands of Amhara (combretum- terminalia) and	Improved Management of Combretum- Terminalia woodlands (Western Lowlands of Amhara)	Protection, preventing overexploitation, managing fires, and improving productivity (NTFP	Split the current woodlands map and focus on the western Lowlands of Amhara. Frankincense	Include woodland class of current landuse located in the Western

Table 6 | Recommended updates from the validation workshop, August 2019

Current or new	Change and additions suggested at the workshop	New/change	Description, purpose or activity (Shared by REDD+, primarily adapted from UNIQUE study)	Criteria	Value
	Eastern lowland (Acacia -		production) through PFM	development is the focus here.	Lowlands of Amhara region
	Commiphora) woodlands.	Improved Management of Acacia <i>Commiphora</i> and Boswellia woodlands (Eastern Lowlands of Amhara)	Protection, preventing overexploitation, managing fires, and improving productivity (NTFP production) through PFM	Split the current woodlands map and focus on Eastern Lowlands of Amhara. Myrrh (Commiphora) and gum arabic (Boswellia) development is the focus here.	Include woodland class of current landuse located in the Eastern lowlands Amhara region
New proposed additions	Additions	Biodiversity Priority Area (BPA) Parks, Community conservation area, KBA, NFPAs, etc.		Include in a map as separate FLR. Management options should be left to the owners/administrators of these land designations	Map the available protected area and NFPAs
		Afro-alpine and sub- afro-alpine ecosystems development and management	Restoration by natural regeneration and limited yet purposeful tree planting for ecosystem conservation (biodiversity protection, watershed management) through PFM	Include as separate FLR	Adapt the UNIQUE criteria
		Church (religious) Forest development and management		Include if available	

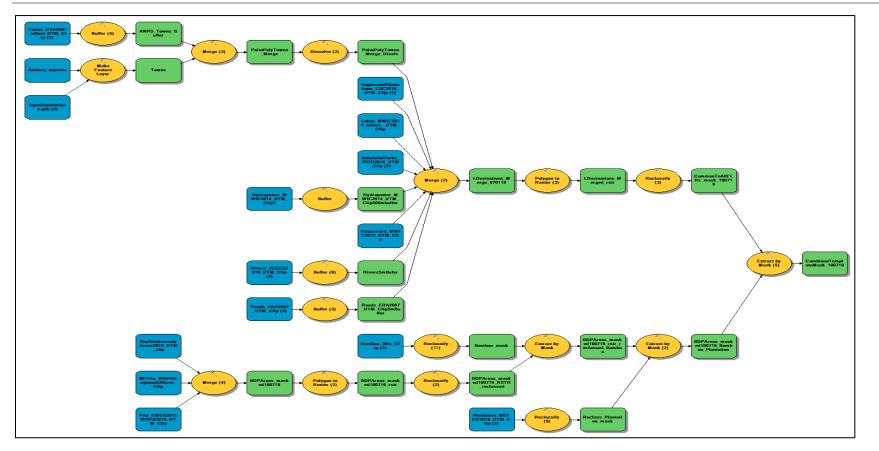
Current or new	Change and additions suggested at the workshop	New/change	Description, purpose or activity (Shared by REDD+, primarily adapted from UNIQUE study)	Criteria	Value
		Degraded formerly cultivated land no longer productive for agriculture		Include using soil maps	
		Restoration of riverine Forest	Protection and restocking of riversides with suitable tree species	Identify using Woody Biomass study and Biodiversity Institute literature on this subject; Trace on Google Earth; and/or use search distance of 30m, and if current forests fall within this distance, consider them riverine forests.	
		Buffer planting around wetlands and lakes, reservoirs, dams		Identify buffer zones from the current authorities managing these resources.	

Participants

A validation workshop was conducted in August 2019 to discuss and get feedback on the draft output maps and statistics. Participants who attended the workshop can be found in Figure 17.

Box 7 | List of validation workshop participants

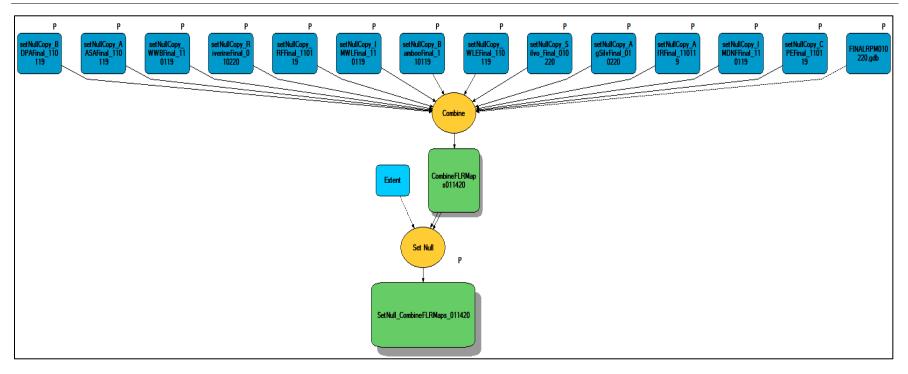
	Amhara Forc	st la	nd-scape rest	oration poten	tial validation w	orkshop organized by	ate 22/08/2019
					Coordination u		
Nis.	Full Name	Sex	Institution	Responsibility	Phone Numeber	Email address	Signiture
1	Desdeyn attack	im	BLIRC	Federalter	0975101197	ded denadas Carna 11/1	at " u
2	Bantamiak Wondmnow	M	BOA	Forestalle	0934625102	ded of - my 28 6 gma, 1 Com bantamiex 2000 @ pmail co	J. J.C.
3	Ashagte methanu	m	Land Adminis	e Gewitteman	19137 1921362 7087	ashagtemettamus Hugman	lan Alt
4	Dessie Assefa	M	BOU	Lecturer	0389367121	dessie genet Ogmast.	come for i
	Dilnesa Simegnew		EFWPDA	Forester	6910700276	de mosasime gnew a Smail	the bail
6	Mesfin Admassu		REDDY	C. est exper	10918768844	atalel.mengistul	A. S. The
7	Geremen Melesse			S. EVpert	1914446343	Jeremen 29 agrail	the property of
8	Bithenemestel Alemu		REDDT	MPYCXPOT	0918202802	bithanemerkel24@3me	LOE THE THE
9	fibeltal Arenew		BOIS	Concurrent	A932277 8962	yibeltala @ amail.	The There I
14	Alexander Sibhatu			Sugar	0913817181	Level X 200.5 6 gmail com	1 The -
FI	Chutadal d dura						
	Sintayen Deresse Bizuagete Alem			containing 1	091005955	Sintayen Magnini. com	-


9 Appendix 2: Spatial Modelling

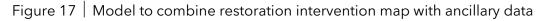
Each intervention criteria were translated into ArcGIS model builder to produce the included maps and statistics. To spare excess technical jargon, we did not include complete list of all models and explanations in this main report.

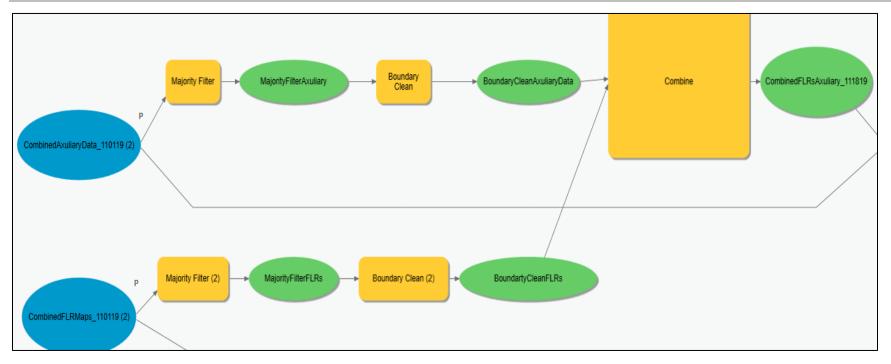
9.1 General Masking Model to Exclude Ineligible Areas from Analysis

This model is included to demonstrate the approach that is relevant to all intervention-specific models. It addresses the first section of set criteria, listed as "Exclusion from all Interventions" (Table 2). Using this model, we exclude all areas of the region that are not eligible to be included in restoration mapping for one of the reasons provided in the same section of Table 2. The output of this model is used as an input for all intervention-specific modeling in addition to respective intervention specific criteria. BDPA interventions were the exception to this process, and part of the model was ignored to map that specific intervention.


Figure 15 | Model to exclude ineligible areas

9.2 A Model to Combine Individual FLR Types into Single Map


This model uses the ArcGIS Analysis tool to combine all individual maps into single map. The resulting combined map includes all possible combination scenarios, showing both areas with overlaps and areas that are exclusively available for the identified interventions. Each possible combination is identified using a unique color code and intervention acronym (GIS key), as explained under the combined map section.


Figure 16 | Model to combine all potential maps

9.3 Merging the Combined FLR Map with Auxiliary Data

Likewise, the combined interventions map was further combined with ancillary data (outlined in Appendix 3) that will aid implementation and local planning. The fields from the three main ancillary data layers and the combined interventions map are merged. All information is stored as an attribute table on pixel basis.

10 Appendix 3: Ancillary Data Included in Final Analysis

10.1 Potential Natural Vegetation Atlas of Ethiopia (PNV)

According to Friis, Sebsebe, and van Breguel, authors of this atlas:

The new <u>vegetation atlas</u> benefits from the complete taxonomic revision for the Flora of Ethiopia and Eritrea made during the years 1980–2009, as well as intensive field studies of the vegetation and flora that have been carried out over nearly the entire country in connection with the Flora project. This atlas is a successor to two well-known vegetation maps of Ethiopia, one published by Pichi Sermolli in 1957, and one which formed part of a vegetation map of the whole of Africa by Frank White in 1983. Both were produced at the scale of 1:5,000,000. For the new atlas definitions of previously accepted vegetation types have been completely revised, and for the first time, it has been attempted to map saline vegetation types. The atlas has been produced using a digital elevation model with a resolution of 90 x 90 meres in connection with GIS technology, allowing a much finer resolution than on previous maps. It is also based on an analysis of information about approximately 1300 species of woody plants in the completed Flora of Ethiopia and Eritrea.

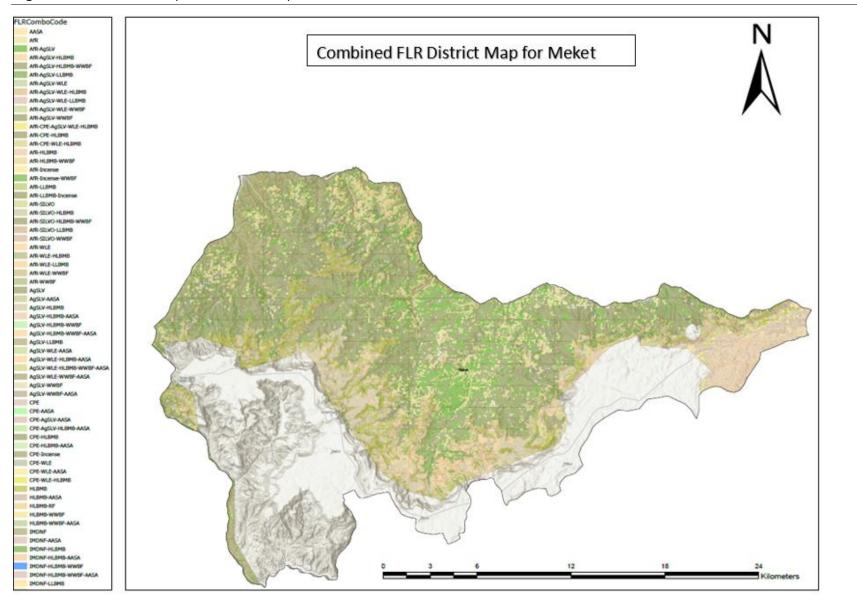
10.2 Ecological Land Units Map (ELU)

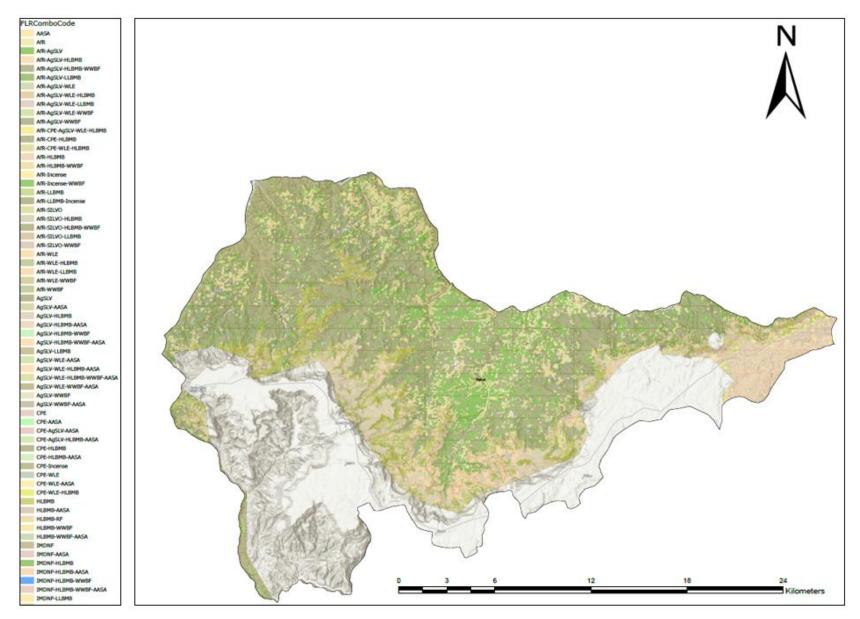
An overview of this map, published by the Association of American Geographers (AAG) states:

The map was produced by a team led by Roger Sayre, Ph.D., Senior Scientist for Ecosystems at the USGS Land Change Science Program. It is a mosaic of almost 4,000 unique ecological areas called <u>Ecological Land Units (ELUs)</u> based on four factors that are key in determining the makeup of ecosystems. Three of these--**bioclimate**, **landforms**, and **rock type**--are physical phenomena that drive the formation of soils and the distribution of vegetation. The fourth, **land cover**, is the vegetation that is found in a location as a response to the physical factors.

10.3 Africa Terrestrial Ecosystems Map

An overview of this report, published by the Association of American Geographers, states:


Terrestrial ecosystems and vegetation of Africa were classified and mapped as part of a larger effort and global protocol (GEOSS – the Global Earth Observation System of Systems), which includes an activity to map terrestrial ecosystems of the earth in a standardized, robust, and practical manner, and at the finest possible spatial resolution. To model the potential distribution of ecosystems, new


continental datasets for several key physical environment data layers (including coastline, landforms, surficial lithology, and bioclimates) were developed at spatial and classification resolutions finer than existing similar data layers. A hierarchical vegetation classification was developed by African ecosystem scientists and vegetation geographers, who also provided sample locations of the newly classified vegetation units. ---- A total of 126 macrogroup types were mapped, each with multiple, repeating occurrences on the landscape. The modeling effort was implemented at a base spatial resolution of 90 m. In addition to creating several rich, new continent-wide biophysical data layers describing African vegetation and ecosystems, our intention was to explore feasible approaches to rapidly moving this type of standardized, continent-wide, ecosystem classification and mapping effort forward. Please refer to the booklet found at this web address for the details.

11 Appendix 4: Meket District Map as an Example of Combined District Maps

The combined interventions map was merged with rich auxiliary data from national and global sources (Appendix 3). The additional information embedded in the attribute table¹¹ is critical information for implementation by aiding practitioners and planners for matching restoration practices and species with site characteristics. Lastly, district maps are printed on poster-sized pdf pages, with each page representing a single district.¹² Each map page contains the map display, attribute table with 7 or 8 columns of key information, and the legend. For easier analysis, the legend for each page contains only information relevant to the target district instead of entire region. District stakeholders and practitioners will find these maps useful planning tools as they can be also printed at high resolution posters for field work or wall maps. The "FLR (combo) Code" column is referring to which FLR type(s) is/are suitable under the conditions for that row. That information is also spatial identifiable using the legend and the map display.

¹¹ See some rows of displayed attribute of Meket district, which has 7 columns with critical info (column names from "PNV_Name", top left - "FLR Code", bottom right) ¹² See the map and enhanced snapshots below.

Box 8 | Partial view of relevant 7 columns of the attribute of Meket district map

PNV_NAME (Vegetation Atlas)	 formation (Africa Terresterial Ecosystems) 	Macrogroup (Africa Terresterial Ecosystems)	EF (Africa Terresterial Ecosystems)	ELU (Ecological Landmap units)	FLR Code (Restoration	Area (ha)
Montane Ericaceous belt	3.A.2 Warm Desert & Semi-Desert Scrub & Grassland	Eastern African Acacia - Commiphora Woodland	Cold Wet Low Mountains Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cold Wet Mountains on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	AgSLV-AASA	15967.44
Montane Ericaceous belt	3.A.2 Warm Desert & Semi-Desert Scrub & Grassland	Eastern African Acacia - Commiphora Woodland	Cold Wet Low Mountains Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cold Wet Mountains on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	WLE-AASA	2107.62
Montane Ericaceous belt	3.A.2 Warm Desert & Semi-Desert Scrub & Grassland	Eastern African Acacia - Commiphora Woodland	Cold Wet Low Mountains Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cold Wet Mountains on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	WLE	18.27
Montane Ericaceous belt	3.A.2 Warm Desert & Semi-Desert Scrub & Grassland	Eastern African Acacia - Commiphora Woodland	Cold Wet Low Mountains Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cold Wet Mountains on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	AfR	52.83
Montane Ericaceous belt	3.A.2 Warm Desert & Semi-Desert Scrub & Grassland	Eastern African Acacia - Commiphora Woodland	Cold Wet Low Mountains Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cold Wet Mountains on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	AgSLV	64.8
Montane Ericaceous belt	1.A.3 Tropical Montane Humid Forest	Moist Evergreen Montane Forest	Cool Wet Low Hills Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cool Wet Hills on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	AASA	1642.5
Montane Ericaceous belt	1.A.3 Tropical Montane Humid Forest	Moist Evergreen Montane Forest	Cool Wet Low Hills Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cool Wet Hills on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	AfR	13.59
Montane Ericaceous belt	3.A.2 Warm Desert & Semi-Desert Scrub & Grassland	Eastern African Acacia - Commiphora Woodland	Cold Wet Low Mountains Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cold Wet Mountains on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	IMDNF-AASA	1514.34
Montane Ericaceous belt	3.A.2 Warm Desert & Semi-Desert Scrub & Grassland	Eastern African Acacia - Commiphora Woodland	Cold Wet Low Mountains Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cold Wet Mountains on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	IMDNF	14.04
Montane Ericaceous belt	1.A.3 Tropical Montane Humid Forest	Moist Evergreen Montane Forest	Cool Wet Low Hills Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cool Wet Hills on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	WLE-AASA	172.08
Montane Ericaceous belt	1.A.3 Tropical Montane Humid Forest	Moist Evergreen Montane Forest	Cool Wet Low Hills Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cool Wet Hills on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	AgSLV-AASA	647.19
Montane Ericaceous belt	3.A.2 Warm Desert & Semi-Desert Scrub & Grassland	Eastern African Acacia - Commiphora Woodland	Cold Wet Low Mountains Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cold Wet Mountains on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	AgSLV-WLE-AASA	388.35
Montane Ericaceous belt	1.A.3 Tropical Montane Humid Forest	Moist Evergreen Montane Forest	Cool Wet Low Hills Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cool Wet Hills on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	IMDNF-AASA	205.38
Montane Ericaceous belt	3.A.2 Warm Desert & Semi-Desert Scrub & Grassland	Eastern African Acacia - Commiphora Woodland	Cold Wet Low Mountains Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cold Wet Mountains on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	SILVO-AASA	2594.88
Montane Ericaceous belt	1.A.3 Tropical Montane Humid Forest	Moist Evergreen Montane Forest	Cool Wet Low Hills Basic Volcanics Mosaic forest or shrubland (50-70%) / grassland (20-50%)	Cool Wet Hills on Non-Acidic Volcanics with Grassland, Shrub, or Scrub	SILVO-AASA	165.96

The GIS files contain more columns, hidden from this snapshot but it can be turned on. Similar district maps are produced for all Woredas (district) of entire Amhara region. The folder included with database contains these maps of all districts.

12 Appendix 5: Exclusively Available FLR Area

11MDNF	2Af11RF	3CPE	4AGSLV	SILVO	66WLE	7LLBMB	8HLBMB	9MYRRH	10INCENSE	11RF	12RIVN	13WWBF	14AASA	15BDPA	Count of Overlaps	Area (ha)	FLR Combo Code
1IMDNF															1	106,117	1IMDNF
	2AFR														1	871,032	2AFR
		3CPE													1	35,568	3CPE
			4AGSLV												1	1,549,939	4AGSLV
				5SILVO											1	2,986	5SILVO
					6WLE										1	219,530	6WLE
						7LLBMB									1	308,703	7LLBMB
							8HLBMB								1	441,742	8HLBMB
								9MYRRH							1	55,329	9MYRRH
									10INCENSE						1	563,485	10INCENSE
										11RF					1	28	11RF
											12RIVN				1	1,763	12RIVN
												13WWBF			1	93,461	13WWBF
													14AASA		1	115,942	14AASA
														15BDPA	1	2,786,785	15BDPA
Total															15	7,152,410	

13 Appendix 6: Overlapping FLR Area

IMDNF	2AfRF	3CPE	4AGSLV	OATIS5	66WLE	7LLBMB	8HLBMB	9MYRRH	OINCENSE	RF	2 RI VN	3WWBF	4AASA	5BDPA	Number of Overlaps	Area (ha)	FLR Combo Code
IMDNF										RF					2	4	IMDNF-RF
IMDNF												WWBF			2	2,953	IMDNF-3WWBF
IMDNF												WWBF	AASA		3	1	IMDNF-3WWBF-4AASA
IMDNF													AASA		2	10,204	IMDNF-4AASA
IMDNF						LLBMB									2	25,162	IMDNF-7LLBMB
IMDNF						LLBMB						WWBF			3	609	IMDNF-7LLBMB-3WWBF
IMDNF							HLBMB								2	30,016	IMDNF-8HLBMB
IMDNF							HLBMB			RF					3	1	IMDNF-8HLBMB-RF
IMDNF							HLBMB					WWBF			3	218	IMDNF-8HLBMB-3WWBF
IMDNF							HLBMB					WWBF	AASA		4	29	IMDNF-8HLBMB-3WWBF- 4AASA
IMDNF							HLBMB						AASA		3	9,120	IMDNF-8HLBMB-4AASA
	AFR								OINCENSE						2	288,683	2AFR-0INCENSE
	AFR								0INCENSE			WWBF			3	7,164	2AFR-0INCENSE-3WWBF
	AFR									RF					2	3	2AFR-RF
	AFR											WWBF			2	25,274	2AFR-3WWBF
	AFR	СРЕ													2	32,320	2AFR-3CPE
	AFR	CPE							0INCENSE						3	850	2AFR-3CPE-0INCENSE
	AFR	CPE							OINCENSE			WWBF			4	3	2AFR-3CPE-0INCENSE- 3WWBF
	AFR	CPE										WWBF			3	61	2AFR-3CPE-3WWBF
	AFR	СРЕ	AGSLV												3	27,321	2AFR-3CPE-4AGSLV

AFR	CPE	AGSLV					WWBF	4	196	2AFR-3CPE-4AGSLV-
AFR	СРЕ	AGSLV	WLE					4	1,110	3WWBF 2AFR-3CPE-4AGSLV-6WLE
AFR	CPE	AGSLV	WLE				WWBF	5	9	2AFR-3CPE-4AGSLV- 6WLE-3WWBF
AFR	CPE	AGSLV	WLE	LLBMB				5	116	2AFR-3CPE-4AGSLV- 6WLE-7LLBMB
AFR	CPE	AGSLV	WLE	LLBMB			WWBF	6	3	2AFR-3CPE-4AGSLV- 6WLE-7LLBMB-3WWBF
AFR	CPE	AGSLV	WLE		HLBMB			5	483	2AFR-3CPE-4AGSLV- 6WLE-8HLBMB
AFR	CPE	AGSLV	WLE		HLBMB		WWBF	6	0	2AFR-3CPE-4AGSLV- 6WLE-8HLBMB-3WWBF
AFR	CPE	AGSLV		LLBMB				4	2,925	2AFR-3CPE-4AGSLV- 7LLBMB
AFR	CPE	AGSLV		LLBMB			WWBF	5	39	2AFR-3CPE-4AGSLV- 7LLBMB-3WWBF
AFR	CPE	AGSLV			HLBMB			4	14,517	2AFR-3CPE-4AGSLV- 8HLBMB
AFR	CPE	AGSLV			HLBMB		WWBF	5	34	2AFR-3CPE-4AGSLV- 8HLBMB-3WWBF
AFR	CPE		WLE					3	2,250	2AFR-3CPE-6WLE
AFR	CPE		WLE				WWBF	4	13	2AFR-3CPE-6WLE-3WWBF
AFR	CPE		WLE	LLBMB				4	337	2AFR-3CPE-6WLE- 7LLBMB
AFR	CPE		WLE	LLBMB			WWBF	5	4	2AFR-3CPE-6WLE- 7LLBMB-3WWBF
AFR	CPE		WLE		HLBMB			4	723	2AFR-3CPE-6WLE- 8HLBMB
AFR	CPE		WLE		HLBMB		WWBF	5	0	2AFR-3CPE-6WLE- 8HLBMB-3WWBF
AFR	СРЕ			LLBMB				3	3,797	2AFR-3CPE-7LLBMB
AFR	CPE			LLBMB		OINCENSE		4	1,274	2AFR-3CPE-7LLBMB- 0INCENSE
AFR	CPE			LLBMB		OINCENSE	WWBF	5	4	2AFR-3CPE-7LLBMB- 0INCENSE-3WWBF

AFR	CPE				LLBMB				WWBF	4	17	2AFR-3CPE-7LLBMB- 3WWBF
AFR	CPE				LLBMB		MYRRH			4	1,063	2AFR-3CPE-7LLBMB- 9MYRRH
AFR	CPE				LLBMB		MYRRH		WWBF	5	17	2AFR-3CPE-7LLBMB- 9MYRRH-3WWBF
AFR	СРЕ					HLBMB				3	17,110	2AFR-3CPE-8HLBMB
AFR	CPE					HLBMB			WWBF	4	19	2AFR-3CPE-8HLBMB- 3WWBF
AFR	CPE						MYRRH			3	2,195	2AFR-3CPE-9MYRRH
AFR	CPE						MYRRH		WWBF	4	28	2AFR-3CPE-9MYRRH- 3WWBF
AFR		AGSLV								2	871,940	2AFR-4AGSLV
AFR		AGSLV						RF		3	1	2AFR-4AGSLV-RF
AFR		AGSLV							WWBF	3	17,563	2AFR-4AGSLV-3WWBF
AFR		AGSLV		WLE						3	83,705	2AFR-4AGSLV-6WLE
AFR		AGSLV		WLE					WWBF	4	2,979	2AFR-4AGSLV-6WLE- 3WWBF
AFR		AGSLV		WLE	LLBMB					4	29,524	2AFR-4AGSLV-6WLE- 7LLBMB
AFR		AGSLV		WLE	LLBMB				WWBF	5	518	2AFR-4AGSLV-6WLE- 7LLBMB-3WWBF
AFR		AGSLV		WLE		HLBMB				4	12,067	2AFR-4AGSLV-6WLE- 8HLBMB
AFR		AGSLV		WLE		HLBMB			WWBF	5	120	2AFR-4AGSLV-6WLE- 8HLBMB-3WWBF
AFR		AGSLV			LLBMB					3	301,575	2AFR-4AGSLV-7LLBMB
AFR		AGSLV			LLBMB				WWBF	4	3,599	2AFR-4AGSLV-7LLBMB- 3WWBF
AFR		AGSLV				HLBMB				3	214,169	2AFR-4AGSLV-8HLBMB
AFR		AGSLV				HLBMB		RF		4	0	2AFR-4AGSLV-8HLBMB-RF
AFR		AGSLV				HLBMB			WWBF	4	1,301	2AFR-4AGSLV-8HLBMB- 3WWBF
AFR			SILVO							2	191,951	2AFR-5SILVO
AFR			SILVO					RF		3	0	2AFR-5SILVO-RF

AFR		SILVO							WWBF	3	11,821	2AFR-5SILVO-3WWBF
AFR		SILVO		LLBMB						3	6,535	2AFR-5SILVO-7LLBMB
AFR		SILVO		LLBMB					WWBF	4	145	2AFR-5SILVO-7LLBMB- 3WWBF
AFR		SILVO			HLBMB					3	68,973	2AFR-5SILVO-8HLBMB
AFR		SILVO			HLBMB				WWBF	4	500	2AFR-5SILVO-8HLBMB- 3WWBF
AFR			WLE							2	97,130	2AFR-6WLE
AFR			WLE					RF		3	0	2AFR-6WLE-RF
AFR			WLE						WWBF	3	1,104	2AFR-6WLE-3WWBF
AFR			WLE	LLBMB						3	51,056	2AFR-6WLE-7LLBMB
AFR			WLE	LLBMB					WWBF	4	135	2AFR-6WLE-7LLBMB- 3WWBF
AFR			WLE		HLBMB					3	15,289	2AFR-6WLE-8HLBMB
AFR			WLE		HLBMB				WWBF	4	33	2AFR-6WLE-8HLBMB- 3WWBF
AFR				LLBMB						2	314,267	2AFR-7LLBMB
AFR				LLBMB			OINCENSE			3	433,787	2AFR-7LLBMB-0INCENSE
AFR				LLBMB			OINCENSE		WWBF	4	2,384	2AFR-7LLBMB-0INCENSE- 3WWBF
AFR				LLBMB					WWBF	3	2,485	2AFR-7LLBMB-3WWBF
AFR				LLBMB		MYRRH				3	38,210	2AFR-7LLBMB-9MYRRH
AFR				LLBMB		MYRRH			WWBF	4	556	2AFR-7LLBMB-9MYRRH- 3WWBF
AFR					HLBMB					2	134,236	2AFR-8HLBMB
AFR					HLBMB		OINCENSE			3	0	2AFR-8HLBMB-0INCENSE
AFR					HLBMB				WWBF	3	404	2AFR-8HLBMB-3WWBF
AFR						MYRRH				2	293,883	2AFR-9MYRRH
AFR						MYRRH			WWBF	3	4,826	2AFR-9MYRRH-3WWBF
	CPE						OINCENSE			2	2,516	3CPE-0INCENSE
	CPE						OINCENSE		WWBF	3	8	3CPE-0INCENSE-3WWBF
	CPE								WWBF	2	89	3CPE-3WWBF

 CPE							AASA	2	851	3CPE-4AASA
CPE	AGSLV					 		2	34	3CPE-4AGSLV
CPE	AGSLV					 WWBF		3	0	3CPE-4AGSLV-3WWBF
CPE	AGSLV						AASA	3	1,549	3CPE-4AGSLV-4AASA
CPE	AGSLV	WLE				 		3	2	3CPE-4AGSLV-6WLE
CPE	AGSLV	WLE					AASA	4	12	3CPE-4AGSLV-6WLE- 4AASA
СРЕ	AGSLV	WLE	LLBMB					4	0	3CPE-4AGSLV-6WLE- 7LLBMB
CPE	AGSLV	WLE		HLBMB				4	0	3CPE-4AGSLV-6WLE- 8HLBMB
CPE	AGSLV	WLE		HLBMB			AASA	5	10	3CPE-4AGSLV-6WLE- 8HLBMB-4AASA
CPE	AGSLV		LLBMB			 		3	1	3CPE-4AGSLV-7LLBMB
CPE	AGSLV			HLBMB		 		3	20	3CPE-4AGSLV-8HLBMB
CPE	AGSLV			HLBMB		WWBF		4	0	3CPE-4AGSLV-8HLBMB 3WWBF
CPE	AGSLV			HLBMB		WWBF	AASA	5	0	3CPE-4AGSLV-8HLBMB 3WWBF-4AASA
CPE	AGSLV			HLBMB			AASA	4	1,960	3CPE-4AGSLV-8HLBMB 4AASA
CPE		WLE				 		2	6,412	3CPE-6WLE
CPE		WLE				 WWBF		3	27	3CPE-6WLE-3WWBF
CPE		WLE				 	AASA	3	33	3CPE-6WLE-4AASA
CPE		WLE	LLBMB			 		3	2,366	3CPE-6WLE-7LLBMB
CPE		WLE	LLBMB			WWBF		4	13	3CPE-6WLE-7LLBMB- 3WWBF
CPE		WLE		HLBMB				3	2,595	3CPE-6WLE-8HLBMB
CPE		WLE		HLBMB		WWBF		4	1	3CPE-6WLE-8HLBMB- 3WWBF
CPE		WLE		HLBMB			AASA	4	43	3CPE-6WLE-8HLBMB- 4AASA
CPE			LLBMB			 		2	8,103	3CPE-7LLBMB
CPE			LLBMB		OINCENSE			3	6,311	3CPE-7LLBMB-0INCENS

CPE			LLBMB			OINCENSE		WWBF			4	15	3CPE-7LLBMB-0INCENSE- 3WWBF
CPE			LLBMB					WWBF			3	42	3CPE-7LLBMB-3WWBF
CPE			LLBMB		MYRRH						3	422	3CPE-7LLBMB-9MYRRH
CPE			LLBMB		MYRRH			WWBF			4	22	3CPE-7LLBMB-9MYRRH- 3WWBF
CPE				HLBMB							2	14,918	3CPE-8HLBMB
CPE				HLBMB				WWBF			3	14	3CPE-8HLBMB-3WWBF
CPE				HLBMB				WWBF	AASA		4	12	3CPE-8HLBMB-3WWBF- 4AASA
CPE				HLBMB					AASA		3	1,279	3CPE-8HLBMB-4AASA
CPE					MYRRH						2	847	3CPE-9MYRRH
 CPE					MYRRH			WWBF			3	49	3CPE-9MYRRH-3WWBF
	AGSLV						RF				2	5	4AGSLV-RF
	AGSLV						RF		AASA		3	1	4AGSLV-RF-4AASA
	AGSLV							WWBF			2	61,217	4AGSLV-3WWBF
	AGSLV							WWBF	AASA		3	35	4AGSLV-3WWBF-4AASA
	AGSLV							WWBF		BDPA	3	0.09	4AGSLV-3WWBF-BDPA
	AGSLV								AASA		2	76,153	4AGSLV-4AASA
	AGSLV	WLE									2	684	4AGSLV-6WLE
	AGSLV	WLE						WWBF			3	262	4AGSLV-6WLE-3WWBF
	AGSLV	WLE						WWBF	AASA		4	4	4AGSLV-6WLE-3WWBF- 4AASA
	AGSLV	WLE							AASA		3	3,269	4AGSLV-6WLE-4AASA
	AGSLV	WLE	LLBMB								3	385	4AGSLV-6WLE-7LLBMB
	AGSLV	WLE	LLBMB					WWBF			4	12	4AGSLV-6WLE-7LLBMB- 3WWBF
	AGSLV	WLE		HLBMB							3	34	4AGSLV-6WLE-8HLBMB
	AGSLV	WLE		HLBMB				WWBF			4	1	4AGSLV-6WLE-8HLBMB- 3WWBF
	AGSLV	WLE		HLBMB				WWBF	AASA		5	19	4AGSLV-6WLE-8HLBMB- 3WWBF-4AASA

AGSLV		WLE		HLBMB			AASA		4	3,934	4AGSLV-6WLE-8HLBMB- 4AASA
AGSLV			LLBMB						2	316,384	4AGSLV-7LLBMB
AGSLV			LLBMB			WWBF			3	5,787	4AGSLV-7LLBMB-3WWBF
AGSLV				HLBMB					2	566,747	4AGSLV-8HLBMB
AGSLV				HLBMB	RF				3	2	4AGSLV-8HLBMB-RF
AGSLV				HLBMB		WWBF			3	3,253	4AGSLV-8HLBMB-3WWBF
AGSLV				HLBMB		WWBF	AASA		4	497	4AGSLV-8HLBMB-3WWBF- 4AASA
AGSLV				HLBMB			AASA		3	193,341	4AGSLV-8HLBMB-4AASA
AGSLV								BDPA	2	1	4AGSLV-BDPA
	SILVO					WWBF			2	1,070	5SILVO-3WWBF
	SILVO					WWBF	AASA		3	6	5SILVO-3WWBF-4AASA
	SILVO						AASA		2	22,516	5SILVO-4AASA
	SILVO		LLBMB						2	6	5SILVO-7LLBMB
	SILVO		LLBMB			WWBF			3	0	5SILVO-7LLBMB-3WWBF
	SILVO			HLBMB					2	115	5SILVO-8HLBMB
	SILVO			HLBMB		WWBF			3	9	5SILVO-8HLBMB-3WWBF
	SILVO			HLBMB		WWBF	AASA		4	50	5SILVO-8HLBMB-3WWBF- 4AASA
	SILVO			HLBMB			AASA		3	30,206	5SILVO-8HLBMB-4AASA
		WLE			RF				2	2	6WLE-RF
		WLE			 RF		AASA		3	1	6WLE-RF-4AASA
		WLE				WWBF			2	4,001	6WLE-3WWBF
		WLE				WWBF	AASA		3	2	6WLE-3WWBF-4AASA
		WLE					AASA		2	9,120	6WLE-4AASA
		WLE	LLBMB						2	91,222	6WLE-7LLBMB
		WLE	LLBMB			WWBF			3	709	6WLE-7LLBMB-3WWBF
		WLE		HLBMB					2	62,160	6WLE-8HLBMB
		WLE		HLBMB	RF				3	1	6WLE-8HLBMB-RF
		WLE		HLBMB		WWBF			3	179	6WLE-8HLBMB-3WWBF

		WLE		HLBMB					WWBF	AASA		4	55	6WLE-8HLBMB-3WWBF- 4AASA
		WLE		HLBMB						AASA		3	12,708	6WLE-8HLBMB-4AASA
			LLBMB			OINCENSE						2	823,977	7LLBMB-0INCENSE
			LLBMB			OINCENSE			WWBF			3	10,596	7LLBMB-0INCENSE- 3WWBF
			LLBMB					RIVN				2	16	7LLBMB-2RIVN
			LLBMB					RIVN	WWBF			3	13	7LLBMB-2RIVN-3WWBF
			LLBMB						WWBF			2	6,343	7LLBMB-3WWBF
			LLBMB		MYRRH							2	17,219	7LLBMB-9MYRRH
			LLBMB		MYRRH				WWBF			3	278	7LLBMB-9MYRRH-3WWBF
				HLBMB		OINCENSE						2	3	8HLBMB-0INCENSE
				HLBMB			RF					2	5	8HLBMB-RF
				HLBMB				RIVN				2	30	8HLBMB-2RIVN
				HLBMB				RIVN	WWBF			3	3	8HLBMB-2RIVN-3WWBF
				HLBMB					WWBF			2	3,140	8HLBMB-3WWBF
				HLBMB					WWBF	AASA		3	464	8HLBMB-3WWBF-4AASA
				HLBMB						AASA		2	101,586	8HLBMB-4AASA
					MYRRH				WWBF			2	965	9MYRRH-3WWBF
						0INCENSE			WWBF			2	13,547	0INCENSE-3WWBF
							RF		WWBF		BDPA	3	9	RF-3WWBF-BDPA
							RF			AASA		2	2	RF-4AASA
							RF				BDPA	2	130	RF-BDPA
								RIVN	WWBF			2	91	2RIVN-3WWBF
								RIVN	WWBF		BDPA	3	115	2RIVN-3WWBF-BDPA
								RIVN			BDPA	2	4,888	2RIVN-BDPA
									WWBF	AASA		2	70	3WWBF-4AASA
									WWBF		BDPA	2	213,436	3WWBF-BDPA
TOTAL												92	6,430,716	·